Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 83: 74-81, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032630

RESUMO

Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.

2.
Methods Mol Biol ; 2617: 165-176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656523

RESUMO

Cytoplasmic expression of recombinant proteins requiring disulfide bridges in Escherichia coli usually leads to the formation of insoluble inclusion bodies (IBs). The reason for this phenomenon is found in the reducing environment of the cytoplasm, preventing the formation of disulfide bridges and therefore resulting in inactive protein aggregates. However, IBs can be refolded in vitro to obtain the protein in its active conformation. In order to correctly form the required disulfide bridges, cystines are fully reduced during solubilization and, with the help of an oxidizing agent, the native disulfide bridges are formed during the refolding step. Here, a protocol to identify suitable redox conditions for solubilization and refolding is presented. For this purpose, a multivariate approach spanning the unit operations solubilization and refolding is used.


Assuntos
Corpos de Inclusão , Oxirredução , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dobramento de Proteína , Redobramento de Proteína , Proteínas Recombinantes/metabolismo , Solubilidade
3.
Monatsh Chem ; 152(11): 1389-1397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759433

RESUMO

Targeted cancer treatment is a promising, less invasive alternative to chemotherapy as it is precisely directed against tumor cells whilst leaving healthy tissue unaffected. The plant-derived enzyme horseradish peroxidase (HRP) can be used for enzyme prodrug cancer therapy with indole-3-acetic acid or the analgesic paracetamol (acetaminophen). Oxidation of paracetamol by HRP in the presence of hydrogen peroxide leads to N-acetyl-p-benzoquinone imine and polymer formation via a radical reaction mechanism. N-acetyl-p-benzoquinone imine binds to DNA and proteins, resulting in severe cytotoxicity. However, plant HRP is not suitable for this application since the foreign glycosylation pattern is recognized by the human immune system, causing rapid clearance from the body. Furthermore, plant-derived HRP is a mixture of isoenzymes with a heterogeneous composition. Here, we investigated the reaction of paracetamol with defined recombinant HRP variants produced in E. coli, as well as plant HRP, and found that they are equally effective in paracetamol oxidation at a concentration ≥ 400 µM. At low paracetamol concentrations, however, recombinant HRP seems to be more efficient in paracetamol oxidation. Yet upon treatment of HCT-116 colon carcinoma and FaDu squamous carcinoma cells with HRP-paracetamol no cytotoxic effect was observed, neither in the presence nor absence of hydrogen peroxide. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00706-021-02848-x.

4.
Biomed Pharmacother ; 142: 112037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392084

RESUMO

Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.


Assuntos
Antineoplásicos/farmacologia , Peroxidase do Rábano Silvestre/farmacologia , Ácidos Indolacéticos/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antineoplásicos/química , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Feminino , Células HCT116 , Peroxidase do Rábano Silvestre/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Pró-Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA