Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Transfus Med Hemother ; 51(2): 111-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584695

RESUMO

Introduction: Primary human blood cells represent an essential model system to study physiology and disease. However, human blood is a limited resource. During healthy donor plateletpheresis, the leukoreduction system chamber (LRSC) reduces the leukocyte amount within the subsequent platelet concentrate through saturated, fluidized, particle bed filtration technology. Normally, the LRSC is discarded after apheresis is completed. Compared to peripheral blood, LRSC yields 10-fold mononuclear cell concentration. Methods: To explore if those retained leukocytes are attractive for research purposes, we isolated CD3+ T cells from the usually discarded LRSCs via density gradient centrifugation in order to manufacture CD19-targeted chimeric antigen receptor (CAR) T cells. Results: Immunophenotypic characterization revealed viable and normal CD4+ and CD8+ T-cell populations within LRSC, with low CD19+ B cell counts. Magnetic-activated cell sorting (MACS) purified CD3+ T cells were transduced with CD19 CAR-encoding lentiviral self-inactivating vectors using concentrated viral supernatants. Robust CD19 CAR cell surface expression on transduced T cells was confirmed by flow cytometry. CD19 CAR T cells were further enriched through anti-CAR MACS, yielding 80% CAR+ T-cell populations. In vitro CAR T cell expansion to clinically relevant numbers was achieved. To prove functionality, CAR T cells were co-incubated with the human CD19+ B cell precursor leukemia cell line Nalm6. Compared to unmodified T cells, CD19 CAR T cells effectively eradicated Nalm6 cells. Conclusion: Taken together, we can show that lymphocytes isolated from LRSCs of plateletpheresis sets can be efficiently used for the generation of functional CAR T cells for experimental purposes.

2.
Hemasphere ; 8(2): e48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435424

RESUMO

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

3.
Transfusion ; 64(1): 29-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38053445

RESUMO

BACKGROUND: The oncological impact of perioperative blood transfusions (PBTs) of patients undergoing radical cystectomy (RC) because of bladder cancer (BCa) has been a controversial topic discussed in recent years. The main cause for the contradictory findings of existing studies might be the missing consideration of the storage time of red blood cell units (BUs), donor age, and gender matching. STUDY DESIGN AND METHODS: We retrospectively analyzed BCa patients who underwent RC in our department between 2004 and 2021. We excluded patients receiving BUs before RC, >10 BUs, or RC in a palliative setting. We assessed the effect of blood donor characteristics and storage time on overall survival (OS) and cancer-specific survival (CSS) through univariate and multivariable Cox regression analysis. We also performed a propensity score matching with patients who received BUs and patients who did not on a 1:1 ratio. RESULTS: We screened 1692 patients and included 676 patients for the propensity score matching. In the multivariable analysis, PBT was independently associated with worse OS and CSS (p < .001). Postoperative transfusions were associated with better OS (p = .004) and CSS (p = .008) compared to intraoperative or mixed transfusions. However, there was no influence of blood donor age, storage time, or gender matching on prognosis. DISCUSSION: In our study of BCa patients undergoing RC, we demonstrate that PBT, especially if administered intraoperatively, is an independent risk factor for a worse prognosis. However, storage time, donor age, or gender matching did not negatively affect oncological outcomes. Therefore, the specific selection of blood products does not promise any benefits.


Assuntos
Cistectomia , Neoplasias da Bexiga Urinária , Humanos , Estudos Retrospectivos , Neoplasias da Bexiga Urinária/cirurgia , Transfusão de Sangue , Prognóstico , Resultado do Tratamento
4.
Front Immunol ; 14: 1227572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965326

RESUMO

The activating receptor natural killer group 2, member D (NKG2D) represents an attractive target for immunotherapy as it exerts a crucial role in cancer immunosurveillance by regulating the activity of cytotoxic lymphocytes. In this study, a panel of novel NKG2D-specific single-chain fragments variable (scFv) were isolated from naïve human antibody gene libraries and fused to the fragment antigen binding (Fab) of rituximab to obtain [CD20×NKG2D] bibodies with the aim to recruit cytotoxic lymphocytes to lymphoma cells. All bispecific antibodies bound both antigens simultaneously. Two bibody constructs, [CD20×NKG2D#3] and [CD20×NKG2D#32], efficiently activated natural killer (NK) cells in co-cultures with CD20+ lymphoma cells. Both bibodies triggered NK cell-mediated lysis of lymphoma cells and especially enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by CD38 or CD19 specific monoclonal antibodies suggesting a synergistic effect between NKG2D and FcγRIIIA signaling pathways in NK cell activation. The [CD20×NKG2D] bibodies were not effective in redirecting CD8+ T cells as single agents, but enhanced cytotoxicity when combined with a bispecific [CD19×CD3] T cell engager, indicating that NKG2D signaling also supports CD3-mediated T cell activation. In conclusion, engagement of NKG2D with bispecific antibodies is attractive to directly activate cytotoxic lymphocytes or to support their activation by monoclonal antibodies or bispecific T cell engagers. As a perspective, co-targeting of two tumor antigens may allow fine-tuning of antibody cancer therapies. Our proposed combinatorial approach is potentially applicable for many existing immunotherapies but further testing in different preclinical models is necessary to explore the full potential.


Assuntos
Anticorpos Biespecíficos , Linfoma , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Linfoma/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/metabolismo , Antígenos CD19
5.
Front Immunol ; 14: 1240275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781391

RESUMO

Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Macrófagos , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Imunoglobulinas/metabolismo , Antígenos CD/metabolismo
6.
Front Immunol ; 13: 929339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389667

RESUMO

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages.


Assuntos
Antígeno CD47 , Leucemia Linfocítica Crônica de Células B , Humanos , Antígeno CD47/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , Rituximab/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Linhagem Celular Tumoral , Fagocitose , Macrófagos , Anticorpos/metabolismo , Antígenos CD/metabolismo
7.
Biol Chem ; 403(5-6): 545-556, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-34717050

RESUMO

Natural killer group 2 member D (NKG2D) plays an important role in the regulation of natural killer (NK) cell cytotoxicity in cancer immune surveillance. With the aim of redirecting NK cell cytotoxicity against tumors, the NKG2D ligand UL-16 binding protein 2 (ULBP2) was fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2). The resulting bispecific immunoligand ULBP2:HER2-scFv triggered NK cell-mediated killing of HER2-positive breast cancer cells in an antigen-dependent manner and required concomitant interaction with NKG2D and HER2 as revealed in antigen blocking experiments. The immunoligand induced tumor cell lysis dose-dependently and was effective at nanomolar concentrations. Of note, ULBP2:HER2-scFv sensitized tumor cells for antibody-dependent cell-mediated cytotoxicity (ADCC). In particular, the immunoligand enhanced ADCC by cetuximab, a therapeutic antibody targeting the epidermal growth factor receptor (EGFR) synergistically. No significant improvements were obtained by combining cetuximab and anti-HER2 antibody trastuzumab. In conclusion, dual-dual targeting by combining IgG1 antibodies with antibody constructs targeting another tumor associated antigen and engaging NKG2D as a second NK cell trigger molecule may be promising. Thus, the immunoligand ULBP2:HER2-scFv may represent an attractive biological molecule to promote NK cell cytotoxicity against tumors and to boost ADCC.


Assuntos
Neoplasias da Mama , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Feminino , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/uso terapêutico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
8.
J Hematol Oncol ; 14(1): 155, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579739

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 "don't eat me signal" is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS: SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS: SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS: SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML.


Assuntos
Antígenos de Diferenciação/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD47/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Imunológicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/imunologia
9.
Cancer Sci ; 112(8): 3029-3040, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058788

RESUMO

Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Antígenos de Diferenciação/química , Antineoplásicos Imunológicos/administração & dosagem , Antígeno CD47/metabolismo , Neoplasias/tratamento farmacológico , Receptores Imunológicos/química , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Antígenos de Diferenciação/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/administração & dosagem , Cetuximab/farmacologia , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/metabolismo , Panitumumabe/administração & dosagem , Panitumumabe/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores Imunológicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Antibodies (Basel) ; 9(4)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212776

RESUMO

BACKGROUND: Native cluster of differentiation (CD) 19 targeting antibodies are poorly effective in triggering antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), which are crucial effector functions of therapeutic antibodies in cancer immunotherapy. Both functions can be enhanced by engineering the antibody's Fc region by altering the amino acid sequence (Fc protein-engineering) or the Fc-linked glycan (Fc glyco-engineering). We hypothesized that combining Fc glyco-engineering with Fc protein-engineering will rescue ADCC and CDC in CD19 antibodies. RESULTS: Four versions of a CD19 antibody based on tafasitamab's V-regions were generated: a native IgG1, an Fc protein-engineered version with amino acid exchanges S267E/H268F/S324T/G236A/I332E (EFTAE modification) to enhance CDC, and afucosylated, Fc glyco-engineered versions of both to promote ADCC. Irrespective of fucosylation, antibodies carrying the EFTAE modification had enhanced C1q binding and were superior in inducing CDC. In contrast, afucosylated versions exerted an enhanced affinity to Fcγ receptor IIIA and had increased ADCC activity. Of note, the double-engineered antibody harboring the EFTAE modification and lacking fucose triggered both CDC and ADCC more efficiently. CONCLUSIONS: Fc glyco-engineering and protein-engineering could be combined to enhance ADCC and CDC in CD19 antibodies and may allow the generation of antibodies with higher therapeutic efficacy by promoting two key functions simultaneously.

11.
Dtsch Med Wochenschr ; 145(15): 1044-1050, 2020 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-32731277

RESUMO

Infection with SARS-COV-2 leads to a number of pathologies in the hematopoetic system that have significant impact on clinical symptoms and mortality. There are 3 stages of infection: (1) early upper respiratory tract infection with fever and lymphopenia (2) pulmonary phase and (3) hyperinflammatory phase with the clinical signs of organ failure such as ARDS/shock. Hyperinflammation, which is triggered by activation of T cells and monocytes/macrophages, is essential for organ pathologies. Interferon IFN-É£, tumor necrosis factor (TNF)-α, IL-10 and interleukin-6 (IL-6) play important roles as mediators of inflammation. In analogy to the cytokine release syndrome (CRS) after CAR-T cell therapy, the therapeutic activity of the IL-6 receptor antibody tocilizumab is investigated in clinical studies.The coagulation system is activated during the inflammatory phase of COVID infection, most likely on the pathophysiological basis of immune thrombosis. Clinically, there is a significantly increased incidence of venous (especially pulmonary artery embolism), but also arterial thromboembolism (TE). In laboratory chemistry, the D-dimer, fibrinogen but also vWF and FVIII are significantly increased. Guidelines for the prophylaxis and therapy of COVID-associated coagulopathy have been developed. Analogous to other viral infections, there are approaches to passive immunization using convalescent plasma. Its administration has shown promising activity in first uncontrolled case series and is currently being examined in clinical studies worldwide for its therapeutic activity.


Assuntos
Infecções por Coronavirus , Doenças Hematológicas , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/terapia , Embolia/prevenção & controle , Embolia/terapia , Embolia/virologia , Doenças Hematológicas/prevenção & controle , Doenças Hematológicas/terapia , Doenças Hematológicas/virologia , Humanos , Inflamação/prevenção & controle , Inflamação/terapia , Inflamação/virologia , Pneumonia Viral/complicações , Pneumonia Viral/terapia , SARS-CoV-2
13.
Transfus Med Hemother ; 46(1): 15-24, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31244578

RESUMO

For years, cancer treatment was dominated by chemotherapy, radiation therapy, and stem cell transplantation. New insights into genetic characteristics of leukemic cells have initiated the development of the chimeric antigen receptor (CAR) T-cell therapy. This type of adoptive cell immunotherapy has been a breakthrough in the treatment of aggressive B-cell lymphoma and B-cell precursor acute lymphoblastic leukemia. In August 2018, the European Commission has approved the first CAR T-cell products - tisagenlecleucel (Kymriah®, Novartis) and axicabtagene ciloleucel (Yescarta®, Gilead) - for hematological neoplasms in Europe. As CAR T cells are a living drug, its benefits can last for many years. The administration of CAR T cells is a complex and costly endeavor involving cell manufacture, shipping of apheresis products, and management of novel and severe adverse reactions. The most common toxicities observed after CAR T-cell therapy are cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Current research focuses on improved safety and efficacy in hematological malignancies as well as the translation of CAR T-cell therapy to solid tumors. This review covers the development and current status of CAR T-cell therapy in a clinical setting with focus on challenges and future opportunities.

14.
Cancers (Basel) ; 11(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841639

RESUMO

Numerous cell⁻cell and cell⁻matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell⁻cell and cell⁻matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.

15.
Transfus Med Hemother ; 44(6): 407-413, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29344017

RESUMO

Once a cohort exceeds a certain size, it becomes mandatory to assign an identifier (ID) for each individual to ensure a secure, reliable, and unambiguous assignment. In the field of hematopoietic stem cell transplantation, with a still growing number of voluntary unrelated donors, it was recognized that a system needs to be developed to uniquely identify potential donors on a global scale to facilitate communication and to prevent errors in identification of donors. Efforts in this respect resulted in establishment of the GRID, with a defined structure and allocated rules. To successfully implement such a project, collaboration among all organizations involved in the process of volunteer donor recruitment, facilitation, and provision of hematopoietic stem cell products is necessary. Therefore, rapidly accessible information combined with a high level of communication and exchange of experiences is crucial. Established systems like the ISBT 128 and the Single European Code (SEC), which standardize the terminology, identification, coding, and labeling of tissues and cells of human origin, serve as a basis on how to successfully implement the GRID on a global scale.

16.
Oncoimmunology ; 5(1): e1058459, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942070

RESUMO

Antibody-dependent cell-mediated cytotoxicity (ADCC) mediated through the IgG Fc receptor FcγRIIIa represents a major effector function of many therapeutic antibodies. In an attempt to further enhance natural killer (NK) cell-mediated ADCC, we combined therapeutic antibodies against CD20 and CD38 with recombinant immunoligands against the stimulatory NK cell receptors NKG2D or NKp30. These immunoligands, respectively designated as ULBP2:7D8 and B7-H6:7D8, contained the CD20 scFv 7D8 as a targeting moiety and a cognate ligand for either NKG2D or NKp30 (i.e. ULBP2 and B7-H6, respectively). Both the immunoligands synergistically augmented ADCC in combination with the CD20 antibody rituximab and the CD38 antibody daratumumab. Combinations with ULBP2:7D8 resulted in higher cytotoxicity compared to combinations with B7-H6:7D8, suggesting that coligation of FcγRIIIa with NKG2D triggered NK cells more efficiently than with NKp30. Addition of B7-H6:7D8 to ULBP2:7D8 and rituximab in a triple combination did not further increase the extent of tumor cell lysis. Importantly, immunoligand-mediated enhancement of ADCC was also observed for tumor cells and autologous NK cells from patients with hematologic malignancies, in which, again, ULBP2:7D8 was particularly active. In summary, co-targeting of NKG2D was more effective in promoting rituximab or daratumumab-mediated ADCC by NK cells than co-ligation of NKp30. The observed increase in the ADCC activity of these therapeutic antibodies suggests promise for a 'dual-dual-targeting' approach in which tumor cell surface antigens are targeted in concert with two distinct activating NK cell receptors (i.e. FcγRIIIa and NKG2D or B7-H6).

17.
MAbs ; 6(2): 409-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492248

RESUMO

Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Eosinófilos/imunologia , Hemoglobinúria Paroxística/imunologia , Hemoglobinúria Paroxística/terapia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Neutrófilos/imunologia , Anticorpos Monoclonais Humanizados/genética , Afinidade de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Células Cultivadas , Cetuximab , Citotoxicidade Imunológica/genética , Receptores ErbB/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoterapia/tendências , Polimorfismo Genético , Engenharia de Proteínas , Receptores de IgG/genética , Receptores de IgG/imunologia , Receptores de IgG/metabolismo
20.
Transfus Med Hemother ; 40(4): 251-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24179473

RESUMO

BACKGROUND: In patients failing successful conventional mobilization of hematopoietic progenitor cells (HPC) plerixafor (Mozobil(®)) seems to be an alternative. We report a series of 14 patients with multiple myeloma or NHL successfully mobilized and harvested by plerixafor together with large-volume leukaphereses (LVL). METHODS: In a first series (GI), 5 patients were mobilized with G-CSF and plerixafor. In the second series (GII), 9 patients were mobilized by chemotherapy, G-CSF, and plerixafor. RESULTS: In GI and GII, addition of plerixafor led to a significant (p < 0.01) increase of leukocytes and CD34+ cells in peripheral blood (PB). In GII, the median number of CD34+ cells in PB before and after addition of plerixafor was significantly (p = 0.019) higher compared to GI (9 vs. 5 and 50 vs. 24 cells/µl, respectively). In GI and GII, a median number of three or one aphereses was performed. In GII, the median yield (6.7 × 10(6) CD34+ cells/kg) of the first apheresis and the median intra-apheresis recruitment of CD34+ cells were significantly (p < 0.05) higher compared to GI (2.94 × 10(6) CD34+ cells/kg). All patients transplanted, 5 in GI and 8 in GII, exhibited successful engraftment. CONCLUSIONS: Plerixafor and G-CSF mobilization or the addition of plerixafor during non-optimal chemotherapy and G-CSF mobilization together with LVL enabled, independent of leukocyte count and even without detectable CD34+ cells before addition of plerixafor, sufficient harvest of HPC numbers for transplantation. Addition of plerixafor during chemotherapy and G-CSF mobilization led to an increased intra-apheresis recruitment and a significantly higher yield of CD34+ cells compared to plerixafor and G-CSF steady-state mobilized patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA