Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27883, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545158

RESUMO

The in situ coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined. The conductive coatings were further used to functionalize both isotropic and anisotropic electrospun polyurethane nanofibrous mats to show their applicability and study the bioactive effect of both the anisotropy and conductivity together. The morphology of composites was studied by means of atomic force microscopy and scanning electron microscopy. A complex cytocompatibility study was performed, including determining cytotoxicity by optical and fluorescence microscopy, the advanced qualification of cell morphology by cell-image analysis, and a study of stem cell behavior. The results clearly showed the significant impact of substrate modification on cells, especially on fibroblasts while the embryonic stem cells were less affected. This study shows not only the effective way to prepare a thin conducting layer based on polypyrrole but also demonstrates its importance for the fabrication of smart biomaterials.

2.
Int J Biol Macromol ; 265(Pt 2): 131036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518940

RESUMO

Thin composite films comprising two primary representatives of conducting polymers, poly(3, 4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), with eco-friendly cellulose nanocrystals (CNC) were prepared through electrochemical polymerization. The combination of CNC and PEDOT (or PPy) results in the formation of films with highly different surface topography and thickness. Intriguingly, different surface conductivity of PEDOT and PPy was revealed by atomic force microscopy albeit that the electrochemical properties were rather similar. The biological properties of the composites in contact with prospective human induced pluripotent stem cells (hiPSC) and cardiomyocytes derived from hiPSC demonstrated good cytocompatibility of both composites and their potential in engineering of electro-sensitive tissues. The as-prepared conducting, eco-friendly and cytocompatible composites are thus promising candidates for biomedical applications where stimuli-responsivity is a crucial cell-instructive property.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanopartículas , Humanos , Polímeros/química , Celulose/química , Engenharia Tecidual , Estudos Prospectivos , Pirróis/química
3.
Carbohydr Polym ; 327: 121640, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171669

RESUMO

In this work, conductive composite hydrogels with covalently attached polypyrrole (PPy) nanoparticles are prepared. Hydrogels are based on partially re-acetylated chitosan soluble at physiological pH without any artificial structural modifications or need for an acidic environment, which simplifies synthesis and purification. Low-toxic and sustainable dialdehyde cellulose (DAC) was used for crosslinking chitosan and covalent anchoring of PPy colloidal particles. The condensation reaction between DAC and PPy is reported for the first time and improves not only the anchoring of PPy particles but also control over the properties of the final composite. The soluble chitosan and PPy particles are shown to act in synergy, which improves the biological properties of the materials. Prepared composite hydrogels are non-cytotoxic, non-irritating, antibacterial, can capture reactive oxygen species often related to excessive inflammation, have conductivity similar to human tissues, enhance in vitro cell growth (migration assay), and have immunomodulatory effects related to the stimulation of neutrophils and macrophages. The covalent attachment of PPy also strengthens the hydrogel network. The aldol condensation as a method for PPy covalent anchoring thus presents an interesting possibility for the development of advanced biomaterials in the future.


Assuntos
Quitosana , Humanos , Quitosana/química , Polímeros/química , Hidrogéis/farmacologia , Hidrogéis/química , Pirróis/química , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia
4.
Carbohydr Polym ; 292: 119661, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725164

RESUMO

Sequential periodate-chlorite oxidation of sodium hyaluronate to 2,3-dicarboxylated hyaluronate (DCH), a novel biocompatible and highly functionalized derivative bearing additional pair of COOH groups at C2 and C3 carbons of oxidized ᴅ-glucuronic acid units, is investigated. The impact of various reaction parameters (time, oxidizer concentration, and molar amount) on DCH's composition, molecular weight, degree of oxidation, and cytotoxicity are investigated to guide the synthesis of DCH derivatives of desired properties. Subsequently, fully (99%) and partially (70%) oxidized DCH derivatives were compared to untreated sodium hyaluronate in terms of anticancer drug cisplatin loading efficacy, carrier capacity, drug release rates, and cytotoxicity towards healthy and cancerous cell lines. DCH derivatives were found to be superior in every aspect, having nearly twice the carrier capacity, significantly slower release rates, and higher efficacy. DCH is thus a highly interesting hyaluronate derivative with an adjustable degree of oxidation, molecular weight, and great potential for further modifications.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Liberação Controlada de Fármacos , Peso Molecular , Oxirredução
5.
Sci Rep ; 12(1): 8065, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577841

RESUMO

Bio-inspired conductive scaffolds composed of sodium hyaluronate containing a colloidal dispersion of water-miscible polyaniline or polypyrrole particles (concentrations of 0.108, 0.054 and 0.036% w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) was used. The scaffolds comprised interconnected pores with prevailing porosity values of ~ 30% and pore sizes enabling the accommodation of cells. A swelling capacity of 92-97% without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of ~ 50 kPa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conductive polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues.


Assuntos
Polímeros , Engenharia Tecidual , Materiais Biocompatíveis/química , Ácido Hialurônico , Polímeros/química , Porosidade , Pirróis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35409042

RESUMO

Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.


Assuntos
Dimetilpolisiloxanos , Poliestirenos , Escherichia coli , Polímeros/química , Porosidade
7.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269688

RESUMO

The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.


Assuntos
Fibroblastos , Polímeros , Animais , Proliferação de Células , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polímeros/química , Propriedades de Superfície
8.
ACS Omega ; 6(32): 20895-20901, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423197

RESUMO

Melamine sponges were coated with polypyrrole during the in situ polymerization of pyrrole. The precipitation polymerization was compared with the dispersion mode, that is, with the preparation in the presence of poly(N-vinylpyrrolidone) and nanosilica as colloidal stabilizers. The coating of sponges during the dispersion polymerization leads to the elimination of the undesired polypyrrole precipitate, improved conductivity, and increased specific surface area. The sponges were tested with respect to their conductivity and as pressure-sensitive conducting materials with antibacterial performance.

9.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419082

RESUMO

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/farmacologia , Pirróis/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem Celular , Corpos Embrioides/citologia , Expressão Gênica/efeitos dos fármacos , Camundongos , Estrutura Molecular , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fator de Transcrição PAX6/genética , Polímeros/química , Pirróis/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética
10.
Polymers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430082

RESUMO

Many polymer materials have found a wide variety of applications in biomedical industries due to their excellent mechanical properties. However, the infections associated with the biofilm formation represent serious problems resulting from the initial bacterial attachment on the polymeric surface. The development of novel slippery liquid-infused porous surfaces (SLIPSs) represents promising method for the biofilm formation prevention. These surfaces are characterized by specific microstructural roughness able to hold lubricants inside. The lubricants create a slippery layer for the repellence of various liquids, such as water and blood. In this study, effective antimicrobial modifications of polyethylene (PE) and polyurethane (PU), as commonly used medical polymers, were investigated. For this purpose, low-temperature plasma treatment was used initially for activation of the polymeric surface, thereby enhancing surface and adhesion properties. Subsequently, preparation of porous microstructures was achieved by electrospinning technique using polydimethylsiloxane (PDMS) in combination with polyamide (PA). Finally, natural black seed oil (BSO) infiltrated the produced fiber mats acting as a lubricating layer. The optimized fiber mats' production was achieved using PDMS/PA mixture at ratio 1:1:20 (g/g/mL) using isopropyl alcohol as solvent. The surface properties of produced slippery surfaces were analyzed by various microscopic and optics techniques to obtain information about wettability, sliding behavior and surface morphology/topography. The modified PE and PU substrates demonstrated slippery behavior of an impinged water droplet at a small tilting angle. Moreover, the antimicrobial effects of the produced SLIPs using black seed oil were proven against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli).

11.
Polymers (Basel) ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076317

RESUMO

Novel Extracellular Vesicles (EVs) based diagnostic techniques are promising non-invasive procedures for early stage disease detection which are gaining importance in the medical field. EVs are cell derived particles found in body liquids, especially blood, from which they are isolated for further analysis. However, techniques for their isolation are not fully standardized and require further improvement. Herein modification of polypropylene (PP) tubes by cold Atmospheric Pressure Plasma Jet (APPJ) is suggested to minimize the EVs to surface binding and thus increase EVs isolation yields. The influence of gaseous plasma treatment on surface morphology was studied by Atomic Force Microscopy (AFM), changes in surface wettability by measuring the Water Contact Angle (WCA), while surface chemical changes were analyzed by X-Ray Photoelectron Spectroscopy (XPS). Moreover, PP tubes from different manufacturers were compared. The final isolation yields of EVs were evaluated by flow cytometry. The results of this study suggest that gaseous plasma treatment is an intriguing technique to uniformly alter surface properties of PP tubes and improve EVs isolation yields up to 42%.

12.
J Photochem Photobiol B ; 211: 112012, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32919175

RESUMO

Here we present a new effective antibacterial material suitable for a coating, e.g., surface treatment of textiles, which is also time and financially undemanding. The most important role is played by hydrophobic carbon quantum dots, as a new type of photosensitizer, produced by carbonization of different carbon precursors, which are incorporated by swelling from solution into various polymer matrices in the form of thin films, in particular polyurethanes, which are currently commercially used for industrial surface treatment of textiles. The role of hydrophobic carbon quantum dots is to work as photosensitizers upon irradiation and produce reactive oxygen species, namely singlet oxygen, which is already known as the most effective radical for elimination different kinds of bacteria on the surface or in close proximity to such modified material. Therefore, we have mainly studied the effect of hydrophobic carbon quantum dots on Staphylococcus aureus and the cytotoxicity tests, which are essential for the safe handling of such material. Also, the production of singlet oxygen by several methods (electron paramagnetic spectroscopy, time-resolved near-infrared spectroscopy), surface structures (atomic force microscopy and contact angle measurement), and the effect of radiation on polymer matrices were studied. The prepared material is easily modulated by end-user requirements.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Fármacos Fotossensibilizantes/química , Materiais Inteligentes/química , Animais , Biofilmes , Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/química , Staphylococcus aureus , Propriedades de Superfície
13.
Mater Sci Eng C Mater Biol Appl ; 113: 110986, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487402

RESUMO

Conducting polymers (CP) can be used as pH- and/or electro-responsive components in various bioapplications, for example, in 4D smart scaffolds. The ability of CP to maintain conductivity under physiological conditions is, therefore, their crucial property. Unfortunately, the conductivity of the CP rapidly decreases in physiological environment, as their conducting salts convert to non-conducting bases. One of the promising solutions how to cope with this shortcoming is the use of alternative "doping" process that is not based on the protonation of CP with acids but on interactions relying in acidic hydrogen bonding. Therefore, the phosphonates (dimethyl phosphonate, diethyl phosphonate, dibutyl phosphonate, or diphenyl phosphonate) were used to re-dope two most common representatives of CP, polyaniline (PANI) and polypyrrole (PPy) bases. As a result, PANI doped with organic phosphonates proved to have significantly better stability of conductivity under different pH. It has also been shown that cytotoxicity of studied materials determined on embryonic stem cells and their embryotoxicity, determined as the impact on cardiomyogenesis and erythropoiesis, depend both on the polymer and phosphonate types used. With the exception of PANI doped with dibutyl phosphonate, all PPy-based phosphonates showed better biocompatibility than the phosphonates based on PANI.


Assuntos
Compostos de Anilina/química , Materiais Biocompatíveis/química , Organofosfonatos/química , Polímeros/química , Pirróis/química , Compostos de Anilina/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Camundongos , Células-Tronco Embrionárias Murinas , Polímeros/farmacologia , Pirróis/farmacologia
14.
Mater Sci Eng C Mater Biol Appl ; 105: 110029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546373

RESUMO

The cytocompatibility of cardiomyocytes derived from embryonic stem cells and neural progenitors, which were seeded on the surface of composite films made of graphene oxide (GO) and polypyrrole (PPy-GO) or poly(3,4-ethylenedioxythiophene) (PEDOT-GO) are reported. The GO incorporated in the composite matrix contributes to the patterning of the composite surface, while the electrically conducting PPy and PEDOT serve as ion-to-electron transducers facilitating electrical stimulation/sensing. The films were fabricated by a simple one-step electropolymerization procedure on electrically conducting indium tin oxide (ITO) and graphene paper (GP) substrates. Factors affecting the cell behaviour, i.e. the surface topography, wettability, and electrical surface conductivity, were studied. The PPy-GO and PEDOT-GO prepared on ITO exhibited high surface conductivity, especially in the case of the ITO/PPy-GO composite. We found that for cardiomyocytes, the PPy-GO and PEDOT-GO composites counteracted the negative effect of the GP substrate that inhibited their growth. Both the PPy-GO and PEDOT-GO composites prepared on ITO and GP significantly decreased the cytocompatibility of neural progenitors. The presented results enhance the knowledge about the biological properties of electroactive materials, which are critical for tissue engineering, especially in context stimuli-responsive scaffolds.


Assuntos
Condutividade Elétrica , Eletroquímica , Grafite/farmacologia , Miócitos Cardíacos/citologia , Células-Tronco Neurais/citologia , Polímeros/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Polímeros/química , Pirróis/química , Água/química
15.
Mater Sci Eng C Mater Biol Appl ; 91: 303-310, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033259

RESUMO

Conducting polymers (CP), namely polyaniline (PANI) and polypyrrole (PPy), are promising materials applicable for the use as biointerfaces as they intrinsically combine electronic and ionic conductivity. Although a number of works have employed PANI or PPy in the preparation of copolymers, composites, and blends with other polymers, there is no systematic study dealing with the comparison of their fundamental biological properties. The present study, therefore, compares the biocompatibility of PANI and PPy in terms of cytotoxicity (using NIH/3T3 fibroblasts and embryonic stem cells) and embryotoxicity (their impact on erythropoiesis and cardiomyogenesis within embryonic bodies). The novelty of the study lies not only in the fact that embryotoxicity is presented for the first time for both studied polymers, but also in the elimination of inter-laboratory variations within the testing, such variation making the comparison of previously published works difficult. The results clearly show that there is a bigger difference between the biocompatibility of the respective polymers in their salt and base forms than between PANI and PPy as such. PANI and PPy can, therefore, be similarly applied in biomedicine when solely their biological properties are considered. Impurity content detected by mass spectroscopy is presented. These results can change the generally accepted opinion of the scientific community on better biocompatibility of PPy in comparison with PANI.


Assuntos
Compostos de Anilina , Corpos Embrioides/metabolismo , Eritropoese/efeitos dos fármacos , Teste de Materiais , Células-Tronco Embrionárias Murinas/metabolismo , Polímeros , Pirróis , Compostos de Anilina/efeitos adversos , Compostos de Anilina/farmacologia , Animais , Corpos Embrioides/patologia , Camundongos , Células-Tronco Embrionárias Murinas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células NIH 3T3 , Polímeros/efeitos adversos , Polímeros/farmacologia , Pirróis/efeitos adversos , Pirróis/farmacologia
16.
ACS Biomater Sci Eng ; 4(12): 3983-3993, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33418799

RESUMO

Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.

17.
Int J Biol Macromol ; 102: 613-624, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28431942

RESUMO

In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers.


Assuntos
Quitosana/química , Doxorrubicina/química , Portadores de Fármacos/química , Fluoruracila/química , Nanoestruturas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Quitosana/toxicidade , Preparações de Ação Retardada , Camundongos , Células NIH 3T3 , Nanoestruturas/toxicidade , Poliésteres/química
18.
Molecules ; 22(5)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28448475

RESUMO

The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span). The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring), hydrophilic lipophilic balance (HLB), type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm) comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus. The formulated emulsions did not exhibit the antibacterial activity that had been anticipated.


Assuntos
Antibacterianos/química , Cannabis/química , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Tamanho da Partícula , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/farmacologia , Staphylococcus aureus/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-24089027

RESUMO

AIMS: To assess the use of skin conductance as an objective measure of pain in infants of different gestational age. A second aim was to investigate the relationship between skin conductivity and selected physiological and behavioural variables (oxygen saturation, heart rate and behavioural state). METHODS: Infants were divided according to gestational age into the following 3 groups; group A: 25+0-31+6 weeks (13 infants), group B: 32+0-35+6 weeks (25 infants), group C: 36+0-41+6 weeks (19 infants). The pain stimulus was blood sampling. RESULTS: The most sensitive parameter for describing changes in skin conductance related to pain was peak per second. No other parameter correlated with the physiological variables chosen. The results showed that the inability to determine basal skin conductance is a crucial disadvantage to practical application. The lack of correlation between conductance parameters and gestational age is surprising. CONCLUSION: We conclude that the Peak per Second is the best parameter for evaluating skin conductance in infants and it is not influenced by gestational age. Peaks per Second correlate only with Prechtl's Scale of behavioural state and not with the physiological parameters chosen.


Assuntos
Resposta Galvânica da Pele/fisiologia , Frequência Cardíaca/fisiologia , Comportamento do Lactente/fisiologia , Consumo de Oxigênio/fisiologia , Medição da Dor/métodos , Feminino , Idade Gestacional , Humanos , Lactente , Masculino
20.
Artigo em Inglês | MEDLINE | ID: mdl-24085314

RESUMO

AIM: The aim of this study is to compare markers of glomerular filtration rate (GFR), estimated GFR (eGFR), and metabolic parameters between admission and recovery in 13 patients of Tomas Bata hospital with methanol poisoning during methanol problems in the Czech Republic in 2012. The impact of methanol concentration and age on metabolic parameters were discovered at the time of admission to hospital. MATERIALS AND METHODS: The serum osmolality, methanol, ethanol, creatinine, cystatin C, Troponin I, ALT, plasma pH and lactate were measured in these 13 patients. The eGFR from serum creatinine (creatnine eGFR) and from cystatin C (cystatin C eGFR) were also determined. RESULTS: Increased serum osmolality and markers of metabolic acidosis are key indirect laboratory findings in patients with methanol poisoning. There were no significant changes in eGFR in our patients between admission and recovery. Increased serum troponin I concentration was confirmed as an indicator of myocardial necrosis in four patients. Two patients developed acute kidney injury (AKI) before admission. CONCLUSIONS: We found statistically significant differences in serum osmolality concentration, plasma pH and lactate between admission and recovery. We found no changes in eGFR between admission and recovery. One patient had vision problems due to damage to the occipital lobes. Methanol poisoning may cause increase in markers of cardiac damage.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Biomarcadores/sangue , Rim/fisiopatologia , Metanol/intoxicação , Adulto , Idoso , República Tcheca , Feminino , Taxa de Filtração Glomerular , Hospitalização , Humanos , Testes de Função Renal , Masculino , Pessoa de Meia-Idade , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA