Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ Open ; 14(2): e081379, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316601

RESUMO

INTRODUCTION: Recently published studies support the beneficial effects of consuming fibre-rich legumes, such as cooked dry beans, to improve metabolic health and reduce cancer risk. In participants with overweight/obesity and a history of colorectal polyps, the Fibre-rich Foods to Treat Obesity and Prevent Colon Cancer randomised clinical trial will test whether a high-fibre diet featuring legumes will simultaneously facilitate weight reduction and suppress colonic mucosal biomarkers of colorectal cancer (CRC). METHODS/DESIGN: This study is designed to characterise changes in (1) body weight; (2) biomarkers of insulin resistance and systemic inflammation; (3) compositional and functional profiles of the faecal microbiome and metabolome; (4) mucosal biomarkers of CRC risk and (5) gut transit. Approximately 60 overweight or obese adults with a history of noncancerous adenomatous polyps within the previous 3 years will be recruited and randomised to one of two weight-loss diets. Following a 1-week run-in, participants in the intervention arm will receive preportioned high-fibre legume-rich entrées for two meals/day in months 1-3 and one meal/day in months 4-6. In the control arm, entrées will replace legumes with lean protein sources (eg, chicken). Both groups will receive in-person and written guidance to include nutritionally balanced sides with energy intake to lose 1-2 pounds per week. ETHICS AND DISSEMINATION: The National Institutes of Health fund this ongoing 5-year study through a National Cancer Institute grant (5R01CA245063) awarded to Emory University with a subaward to the University of Pittsburgh. The study protocol was approved by the Emory Institutional Review Board (IRB approval number: 00000563). TRIAL REGISTRATION NUMBER: NCT04780477.


Assuntos
Pólipos Adenomatosos , Neoplasias do Colo , Fabaceae , Microbioma Gastrointestinal , Adulto , Humanos , Sobrepeso/complicações , Sobrepeso/terapia , Obesidade/complicações , Obesidade/terapia , Neoplasias do Colo/prevenção & controle , Pólipos Adenomatosos/complicações , Verduras , Metaboloma , Biomarcadores , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38407264

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as NAFLD, is the most common liver disease in children. Liver biopsy remains the gold standard for diagnosis, although more efficient screening methods are needed. We previously developed a novel NAFLD screening panel in youth using machine learning applied to high-resolution metabolomics and clinical phenotype data. Our objective was to validate this panel in a separate cohort, which consisted of a combined cross-sectional sample of 161 children with stored frozen samples (75% male, 12.8±2.6 years of age, body mass index 31.0±7.0 kg/m2, 81% with MASLD, 58% Hispanic race/ethnicity). METHODS: Clinical data were collected from all children, and high-resolution metabolomics was performed using their fasting serum samples. MASLD was assessed by MRI-proton density fat fraction or liver biopsy and cardiometabolic factors. Our previously developed panel included waist circumference, triglycerides, whole-body insulin sensitivity index, 3 amino acids, 2 phospholipids, dihydrothymine, and 2 unknowns. To improve feasibility, a simplified version without the unknowns was utilized in the present study. Since the panel was modified, the data were split into training (67%) and test (33%) sets to assess the validity of the panel. RESULTS: Our present highest-performing modified model, with 4 clinical variables and 8 metabolomics features, achieved an AUROC of 0.92, 95% sensitivity, and 80% specificity for detecting MASLD in the test set. CONCLUSIONS: Therefore, this panel has promising potential for use as a screening tool for MASLD in youth.


Assuntos
Antifibrinolíticos , Hepatopatia Gordurosa não Alcoólica , Adolescente , Masculino , Humanos , Criança , Feminino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Transversais , Metabolômica , Biópsia
3.
Metabolites ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984841

RESUMO

Dietary sugar reduction is one therapeutic strategy for improving nonalcoholic fatty liver disease (NAFLD), and the underlying mechanisms for this effect warrant further investigation. Here, we employed metabolomics and metagenomics to examine systemic biological adaptations associated with dietary sugar restriction and (subsequent) hepatic fat reductions in youth with NAFLD. Data/samples were from a randomized controlled trial in adolescent boys (11-16 years, mean ± SD: 13.0 ± 1.9 years) with biopsy-proven NAFLD who were either provided a low free-sugar diet (LFSD) (n = 20) or consumed their usual diet (n = 20) for 8 weeks. Plasma metabolomics was performed on samples from all 40 participants by coupling hydrophilic interaction liquid chromatography (HILIC) and C18 chromatography with mass spectrometry. In a sub-sample (n = 8 LFSD group and n = 10 usual diet group), 16S ribosomal RNA (rRNA) sequencing was performed on stool to examine changes in microbial composition/diversity. The diet treatment was associated with differential expression of 419 HILIC and 205 C18 metabolite features (p < 0.05), which were enriched in amino acid pathways, including methionine/cysteine and serine/glycine/alanine metabolism (p < 0.05), and lipid pathways, including omega-3 and linoleate metabolism (p < 0.05). Quantified metabolites that were differentially changed in the LFSD group, compared to usual diet group, and representative of these enriched metabolic pathways included increased serine (p = 0.001), glycine (p = 0.004), 2-aminobutyric acid (p = 0.012), and 3-hydroxybutyric acid (p = 0.005), and decreased linolenic acid (p = 0.006). Microbiome changes included an increase in richness at the phylum level and changes in a few genera within Firmicutes. In conclusion, the LFSD treatment, compared to usual diet, was associated with metabolome and microbiome changes that may reflect biological mechanisms linking dietary sugar restriction to a therapeutic decrease in hepatic fat. Studies are needed to validate our findings and test the utility of these "omics" changes as response biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA