Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(25): 4995-5006, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35610045

RESUMO

Midbrain dopaminergic (DA) neurons include many subtypes characterized by their location, connectivity and function. Surprisingly, mechanisms underpinning the specification of A9 neurons [responsible for motor function, including within ventral midbrain (VM) grafts for treating Parkinson's disease (PD)] over adjacent A10, remains largely speculated. We assessed the impact of synaptic targeting on survival, integration, and phenotype acquisition of dopaminergic neurons within VM grafts generated from fetal tissue or human pluripotent stem cells (PSCs). VM progenitors were grafted into female mice with 6OHDA-lesions of host midbrain dopamine neurons, with some animals also receiving intrastriatal quinolinic acid (QA) injections to ablate medium spiny neurons (MSN), the A9 neuron primary target. While loss of MSNs variably affected graft survival, it significantly reduced striatal yet increased cortical innervation. Consequently, grafts showed reduced A9 and increased A10 specification, with more DA neurons failing to mature into either subtype. These findings highlight the importance of target acquisition on DA subtype specification during development and repair.SIGNIFICANCE STATEMENT Parish and colleagues highlight, in a rodent model of Parkinson's disease (PD), the importance of synaptic target acquisition in the survival, integration and phenotypic specification of grafted dopamine neurons derived from fetal tissue and human stem cells. Ablation of host striatal neurons resulted in reduced dopamine neuron survival within grafts, re-routing of dopamine fibers from striatal to alternate cortical targets and a consequential reduced specification of A9 dopamine neurons (the subpopulation critical for restoration of motor function) and increase in A10 DA neurons.


Assuntos
Doença de Parkinson , Células-Tronco Pluripotentes , Animais , Corpo Estriado , Neurônios Dopaminérgicos/fisiologia , Feminino , Mesencéfalo , Camundongos , Doença de Parkinson/cirurgia , Fenótipo
2.
Cell Stem Cell ; 29(3): 434-448.e5, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180398

RESUMO

Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.


Assuntos
Dopamina , Células-Tronco Pluripotentes , Adulto , Dopamina/metabolismo , Terapia Genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Mesencéfalo/metabolismo , Células-Tronco Pluripotentes/metabolismo , Substância Negra/metabolismo , Substância Negra/transplante
3.
Nat Commun ; 12(1): 3275, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045451

RESUMO

Despite advancements in human pluripotent stem cells (hPSCs) differentiation protocols to generate appropriate neuronal progenitors suitable for transplantation in Parkinson's disease, resultant grafts contain low proportions of dopamine neurons. Added to this is the tumorigenic risk associated with the potential presence of incompletely patterned, proliferative cells within grafts. Here, we utilised a hPSC line carrying a FailSafeTM suicide gene (thymidine kinase linked to cyclinD1) to selectively ablate proliferative cells in order to improve safety and purity of neural transplantation in a Parkinsonian model. The engineered FailSafeTM hPSCs demonstrated robust ventral midbrain specification in vitro, capable of forming neural grafts upon transplantation. Activation of the suicide gene within weeks after transplantation, by ganciclovir administration, resulted in significantly smaller grafts without affecting the total yield of dopamine neurons, their capacity to innervate the host brain or reverse motor deficits at six months in a rat Parkinsonian model. Within ganciclovir-treated grafts, other neuronal, glial and non-neural populations (including proliferative cells), were significantly reduced-cell types that may pose adverse or unknown influences on graft and host function. These findings demonstrate the capacity of a suicide gene-based system to improve both the standardisation and safety of hPSC-derived grafts in a rat model of Parkinsonism.


Assuntos
Engenharia Celular/métodos , Genes Transgênicos Suicidas , Doença de Parkinson Secundária/terapia , Transplante de Células-Tronco/métodos , Animais , Apoptose/genética , Diferenciação Celular , Linhagem Celular , Proliferação de Células/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Feminino , Genes bcl-1/genética , Xenoenxertos/citologia , Xenoenxertos/patologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Masculino , Mesencéfalo/citologia , Mesencéfalo/patologia , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Ratos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/normas , Timidina Quinase/genética
4.
Stem Cell Reports ; 16(5): 1262-1275, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33836146

RESUMO

Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease.


Assuntos
Córtex Cerebral/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Organogênese , Transdução de Sinais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organogênese/efeitos dos fármacos , Fator de Transcrição PAX6/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo
5.
Cell Stem Cell ; 26(4): 511-526.e5, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059808

RESUMO

Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.


Assuntos
Terapia Genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Doença de Parkinson , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/terapia , Ratos , Ratos Sprague-Dawley
6.
Stem Cell Reports ; 13(5): 877-890, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680060

RESUMO

Human pluripotent stem cells are a valuable resource for transplantation, yet our ability to profile xenografts is largely limited to low-throughput immunohistochemical analysis by difficulties in readily isolating grafts for transcriptomic and/or proteomic profiling. Here, we present a simple methodology utilizing differences in the RNA sequence between species to discriminate xenograft from host gene expression (using qPCR or RNA sequencing [RNA-seq]). To demonstrate the approach, we assessed grafts of undifferentiated human stem cells and neural progenitors in the rodent brain. Xenograft-specific qPCR provided sensitive detection of proliferative cells, and identified germ layer markers and appropriate neural maturation genes across the graft types. Xenograft-specific RNA-seq enabled profiling of the complete transcriptome and an unbiased characterization of graft composition. Such xenograft-specific profiling will be crucial for pre-clinical characterization of grafts and batch-testing of therapeutic cell preparations to ensure safety and functional predictability prior to translation.


Assuntos
Encéfalo/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Xenoenxertos , Humanos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Análise de Sequência de RNA , Especificidade da Espécie
7.
J Neurosci ; 39(48): 9521-9531, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31641054

RESUMO

Human pluripotent stem cells (hPSCs) are a promising resource for the replacement of degenerated ventral midbrain dopaminergic (vmDA) neurons in Parkinson's disease. Despite recent advances in protocols for the in vitro generation of vmDA neurons, the asynchronous and heterogeneous nature of the differentiations results in transplants of surprisingly low vmDA neuron purity. As the field advances toward the clinic, it will be optimal, if not essential, to remove poorly specified and potentially proliferative cells from donor preparations to ensure safety and predictable efficacy. Here, we use two novel hPSC knock-in reporter lines expressing GFP under the LMX1A and PITX3 promoters, to selectively isolate vm progenitors and DA precursors, respectively. For each cell line, unsorted, GFP+, and GFP- cells were transplanted into male or female Parkinsonian rodents. Only rats receiving unsorted cells, LMX1A-eGFP+, or PITX3-eGFP- cell grafts showed improved motor function over 6 months. Postmortem analysis revealed small grafts from PITX3-eGFP+ cells, suggesting that these DA precursors were not compatible with cell survival and integration. In contrast, LMX1A-eGFP+ grafts were highly enriched for vmDA neurons, and importantly excluded expansive proliferative populations and serotonergic neurons. These LMX1A-eGFP+ progenitor grafts accelerated behavioral recovery and innervated developmentally appropriate forebrain targets, whereas LMX1A-eGFP- cell grafts failed to restore motor deficits, supported by increased fiber growth into nondopaminergic target nuclei. This is the first study to use an hPSC-derived reporter line to purify vm progenitors, resulting in improved safety, predictability of the graft composition, and enhanced motor function.SIGNIFICANCE STATEMENT Clinical trials have shown functional integration of transplanted fetal-derived dopamine progenitors in Parkinson's disease. Human pluripotent stem cell (hPSC)-derived midbrain progenitors are now being tested as an alternative cell source; however, despite current differentiation protocols generating >80% correctly specified cells for implantation, resultant grafts contain a small fraction of dopamine neurons. Cell-sorting approaches, to select for correctly patterned cells before implantation, are being explored yet have been suboptimal to date. This study provides the first evidence of using 2 hPSC reporter lines (LMX1A-GFP and PITX3-GFP) to isolate correctly specified cells for transplantation. We show LMX1A-GFP+, but not PITX3-GFP+, cell grafts are more predictable, with smaller grafts, enriched in dopamine neurons, showing appropriate integration and accelerated functional recovery in Parkinsonian rats.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Mesencéfalo/metabolismo , Transtornos Parkinsonianos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Feminino , Previsões , Humanos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/terapia , Ratos , Ratos Nus
8.
Stroke ; 49(3): 700-709, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29382802

RESUMO

BACKGROUND AND PURPOSE: Human amnion epithelial cells (hAECs) are nonimmunogenic, nontumorigenic, anti-inflammatory cells normally discarded with placental tissue. We reasoned that their profile of biological features, wide availability, and the lack of ethical barriers to their use could make these cells useful as a therapy in ischemic stroke. METHODS: We tested the efficacy of acute (1.5 hours) or delayed (1-3 days) poststroke intravenous injection of hAECs in 4 established animal models of cerebral ischemia. Animals included young (7-14 weeks) and aged mice (20-22 months) of both sexes, as well as adult marmosets of either sex. RESULTS: We found that hAECs administered 1.5 hours after stroke in mice migrated to the ischemic brain via a CXC chemokine receptor type 4-dependent mechanism and reduced brain inflammation, infarct development, and functional deficits. Furthermore, if hAECs administration was delayed until 1 or 3 days poststroke, long-term functional recovery was still augmented in young and aged mice of both sexes. We also showed proof-of-principle evidence in marmosets that acute intravenous injection of hAECs prevented infarct development from day 1 to day 10 after stroke. CONCLUSIONS: Systemic poststroke administration of hAECs elicits marked neuroprotection and facilitates mechanisms of repair and recovery.


Assuntos
Âmnio/transplante , Células Epiteliais/transplante , Neuroproteção , Acidente Vascular Cerebral/terapia , Animais , Callithrix , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
9.
Stem Cell Reports ; 9(3): 868-882, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28867345

RESUMO

Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Transplante de Células-Tronco , Fatores de Transcrição/metabolismo , Animais , Axônios/metabolismo , Diferenciação Celular , Linhagem Celular , Genes Reporter , Humanos , Masculino , Mesencéfalo/citologia , Atividade Motora , Rede Nervosa/metabolismo , Ratos Nus
10.
Front Cell Neurosci ; 9: 104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873861

RESUMO

PITX3 expression is confined to adult midbrain dopaminergic (mDA) neurons. In this study we describe the generation and basic functional characteristics of mDA neurons derived from a human pluripotent stem cell (hPSC) line expressing eGFP under the control of the PITX3 promoter. Flow cytometry showed that eGFP was evident in 15% of the neuron population at day 12 of differentiation and this level was maintained until at least day 80. From days 20 to 80 of differentiation intracellular chloride decreased and throughout this period around ∼20% of PITX3(eGFP/w) neurons exhibited spontaneous Ca(2+) transients (from 3.3 ± 0.3 to 5.0 ± 0.1 min(-1), respectively). These neurons also responded to any of ATP, glutamate, acetylcholine, or noradrenaline with elevations of intracellular calcium. As neuronal cultures matured more dopamine was released and single PITX3(eGFP/w) neurons began to respond to more than one neurotransmitter. MPP(+) and tumor necrosis factor (TNF), but not prostaglandin E2, caused death of the ∼50% of PITX3(eGFP/w) neurons (day 80). Tracking eGFP using time lapse confocal microscopy over 24 h demonstrated significant TNF-mediated neurite retraction over time. This work now shows that these PITX3(eGFP/w) neurons are amenable to flow cytometry, release dopamine and respond to multiple neurotransmitters with elevations of intracellular calcium, we believe that they represent a versatile system for neuropharmacological and neurotoxicological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA