Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(51): 57431-57440, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33306341

RESUMO

Filamentous fungi have been considered as candidates to replace petroleum-based adhesives and plastics in novel composite material production, particularly those containing lignocellulosic materials. However, the nature of the role of surface mycelium in the adhesion between lignocellulosic composite components is not well-known. The current study investigated the functionality of surface mycelium for wood bonding by incubating Trametes versicolor on yellow birch veneers and compared the lap-shear strengths after hot-pressing to evaluate if the presence of surface mycelium can improve the interface between two wood layers and consequently improve bonding. We found that the lap-shear strength of the samples was enhanced by the increase of surface mycelium coverage up to 8 days of incubation (up to 1.74 MPa) without a significant wood weight loss. We provide evidence that the bottom surface of the mycelium layer is more hydrophilic, contains more small-scale filamentous structure and contains more functional groups, resulting in better bonding with wood than the top surface. These observations confirm and highlight the functionality of the surface mycelium layer for wood bonding and provide useful information for future developments in fully biobased composites manufacturing.


Assuntos
Adesivos/química , Micélio/química , Madeira/química , Adesivos/metabolismo , Teste de Materiais , Micélio/metabolismo , Polyporaceae/metabolismo , Resistência ao Cisalhamento , Propriedades de Superfície , Madeira/metabolismo , Madeira/microbiologia
2.
J Biol Chem ; 293(13): 4702-4712, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29462790

RESUMO

Peroxidases are considered essential agents of lignin degradation by white-rot basidiomycetes. However, low-molecular-weight oxidants likely have a primary role in lignin breakdown because many of these fungi delignify wood before its porosity has sufficiently increased for enzymes to infiltrate. It has been proposed that lignin peroxidases (LPs, EC 1.11.1.14) fulfill this role by oxidizing the secreted fungal metabolite veratryl alcohol (VA) to its aryl cation radical (VA+•), releasing it to act as a one-electron lignin oxidant within woody plant cell walls. Here, we attached the fluorescent oxidant sensor BODIPY 581/591 throughout beads with a nominal porosity of 6 kDa and assessed whether peroxidase-generated aryl cation radical systems could oxidize the beads. As positive control, we used the 1,2,4,5-tetramethoxybenzene (TMB) cation radical, generated from TMB by horseradish peroxidase. This control oxidized the beads to depths that increased with the amount of oxidant supplied, ultimately resulting in completely oxidized beads. A reaction-diffusion computer model yielded oxidation profiles that were within the 95% confidence intervals for the data. By contrast, bead oxidation caused by VA and the LPA isozyme of Phanerochaete chrysosporium was confined to a shallow shell of LP-accessible volume at the bead surface, regardless of how much oxidant was supplied. This finding contrasted with the modeling results, which showed that if the LP/VA system were to release VA+•, it would oxidize the bead interiors. We conclude that LPA releases insignificant quantities of VA+• and that a different mechanism produces small ligninolytic oxidants during white rot.


Assuntos
Álcoois Benzílicos/química , Radicais Livres/química , Proteínas Fúngicas/química , Peroxidases/química , Polyporales/enzimologia , Oxirredução
3.
ACS Appl Mater Interfaces ; 7(12): 6584-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25756624

RESUMO

Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol-formaldehyde (BrPF) into wood cell walls. Cell wall infiltration of five BrPF adhesives with different average molecular weights (MWs) was mapped. Nanoindentation on the same cell walls was performed to assess the effects of BrPF infiltration on cell wall hygromechanical properties. For the same amount of weight uptake, lower MW BrPF adhesives were found to be more effective at decreasing moisture-induced mechanical softening. This greater effectiveness of lower MW phenolic adhesives likely resulted from their ability to more intimately associate with water sorption sites in the wood polymers. Evidence also suggests that a BrPF interpenetrating polymer network (IPN) formed within the wood polymers, which might also decrease moisture sorption by mechanically restraining wood polymers during swelling.


Assuntos
Parede Celular/química , Formaldeído/química , Fenol/química , Madeira/química , Adesivos/química , Microscopia de Fluorescência , Síncrotrons
4.
Biofouling ; 25(6): 563-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19449240

RESUMO

The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% +/- 14% to 5% +/- 6% upon the application of pulsed electric signals. The application of ROS scavengers such as glutathione and catalase counteracted the inhibitory effects of the electric signals, allowing settlement, and thus indicating that ROS are antifouling agents. Based on the experimental evidence, the proposed mechanism for ROS-based fouling prevention with interdigitated electrodes involved the electrochemical generation of hydrogen peroxide by oxygen reduction, and its likely reduction to hydroxyl radicals. Either hydroxyl radicals or products of hydroxyl radical reactions appeared to be the main deterrents of larval settlement.


Assuntos
Eletricidade , Espécies Reativas de Oxigênio/metabolismo , Thoracica/crescimento & desenvolvimento , Animais , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Larva/crescimento & desenvolvimento , Biologia Marinha , Oxidantes/metabolismo , Oxirredução , Thoracica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA