Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638997

RESUMO

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3ß. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3ß (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/ß phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/ß reduced thrombin-mediated platelet aggregation, integrin αIIbß3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3ß phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3ß resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/ß KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3ß KI. In conclusion, our data indicate that GSK3α and GSK3ß have differential roles in regulating platelet function.


Assuntos
Plaquetas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Trombose/metabolismo , Animais , Doadores de Sangue , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Trombose/genética
2.
Biochem Pharmacol ; 177: 113975, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32298692

RESUMO

BACKGROUND AND PURPOSE: Rapamycin is a potent immunosuppressant and anti-proliferative agent used clinically to prevent organ transplant rejection and for coating coronary stents to counteract restenosis. Rapamycin complexes with the immunophilin FKBP12, which subsequently binds and inhibits mTORC1. Despite several reports demonstrating that rapamycin affects platelet-mediated responses, the underlying mechanism of how it alters platelet function is poorly characterised. This study aimed to elucidate the effect of rapamycin on platelet procoagulant responses. EXPERIMENTAL APPROACH: The effect of rapamycin on platelet activation and signalling was investigated alongside the catalytic mTOR inhibitors KU0063794 and WYE-687, and the FKBP12-binding macrolide FK506. KEY RESULTS: Rapamycin affects platelet procoagulant responses by reducing externalisation of the procoagulant phospholipid phosphatidylserine, formation of balloon-like structures and local generation of thrombin. Catalytic mTOR kinase inhibitors did not alter platelet procoagulant processes, despite having a similar effect as rapamycin on Ca2+ signalling, demonstrating that the effect of rapamycin on procoagulant responses is independent of mTORC1 inhibition and not linked to a reduction in Ca2+ signalling. FK506, which also forms a complex with FKBP12 but does not target mTOR, reduced platelet procoagulant responses to a similar extent as rapamycin. Both rapamycin and FK506 prevented the loss of mitochondria integrity induced by platelet activation, one of the central regulatory events leading to PS externalisation. CONCLUSIONS AND IMPLICATIONS: Rapamycin suppresses platelet procoagulant responses by protecting mitochondrial integrity in a manner independent of mTORC1 inhibition. Rapamycin and other drugs targeting FKBP immunophilins could aid the development of novel complementary anti-platelet therapies.


Assuntos
Plaquetas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Plaquetas/citologia , Plaquetas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Regulação da Expressão Gênica , Humanos , Ionomicina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Peptídeos/farmacologia , Fosfatidilserinas/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Cultura Primária de Células , Pirazóis/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Tacrolimo/farmacologia , Trombina/metabolismo , Trombina/farmacologia
3.
Nat Med ; 24(9): 1395-1406, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30150719

RESUMO

Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P2), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.


Assuntos
Frutose-Bifosfatase/metabolismo , Glucose/biossíntese , Fígado/enzimologia , Metformina/farmacologia , Monofosfato de Adenosina/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Sequência de Bases , Galinhas , Modelos Animais de Doenças , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Intolerância à Glucose/patologia , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemia/patologia , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Obesidade/patologia , Pró-Fármacos/química , Ribonucleotídeos/farmacologia
4.
Chem Biol ; 21(7): 866-79, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036776

RESUMO

AMPK is a sensor of cellular energy status and a promising target for drugs aimed at metabolic disorders. We have studied the selectivity and mechanism of a recently described activator, C2, and its cell-permeable prodrug, C13. C2 was a potent allosteric activator of α1-complexes that, like AMP, also protected against Thr172 dephosphorylation. Compared with AMP, C2 caused only partial allosteric activation of α2-complexes and failed to protect them against dephosphorylation. We show that both effects could be fully restored by exchanging part of the linker between the autoinhibitory and C-terminal domains in α2, containing the equivalent region from α1 thought to interact with AMP bound in site 3 of the γ subunit. Consistent with our results in cell-free assays, C13 potently inhibited lipid synthesis in hepatocytes from wild-type and was largely ineffective in AMPK-knockout hepatocytes; its effects were more severely affected by knockout of α1 than of α2, ß1, or ß2.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Quinases Ativadas por AMP/química , Monofosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/metabolismo , Esterificação/efeitos dos fármacos , Ácidos Graxos/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Subunidades Proteicas/agonistas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Especificidade por Substrato
5.
Circ Res ; 114(6): 966-75, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24503893

RESUMO

RATIONALE: AMP-activated protein kinase is a master regulator of cell metabolism and an attractive drug target for cancer and metabolic and cardiovascular diseases. Point mutations in the regulatory γ2-subunit of AMP-activated protein kinase (encoded by Prkag2 gene) caused a unique form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular preexcitation, and glycogen storage. Understanding the disease mechanisms of Prkag2 cardiomyopathy is not only beneficial for the patients but also critical to the use of AMP-activated protein kinase as a drug target. OBJECTIVE: We sought to identify the pro-growth-signaling pathway(s) triggered by Prkag2 mutation and to distinguish it from the secondary response to glycogen storage. METHODS AND RESULTS: In a mouse model of N488I mutation of the Prkag2 gene (R2M), we rescued the glycogen storage phenotype by genetic inhibition of glucose-6-phosphate-stimulated glycogen synthase activity. Ablation of glycogen storage eliminated the ventricular preexcitation but did not affect the excessive cardiac growth in R2M mice. The progrowth effect in R2M hearts was mediated via increased insulin sensitivity and hyperactivity of Akt, resulting in activation of mammalian target of rapamycin and inactivation of forkhead box O transcription factor-signaling pathways. Consequently, cardiac myocyte proliferation during the postnatal period was enhanced in R2M hearts followed by hypertrophic growth in adult hearts. Inhibition of mammalian target of rapamycin activity by rapamycin or restoration of forkhead box O transcription factor activity by overexpressing forkhead box O transcription factor 1 rescued the abnormal cardiac growth. CONCLUSIONS: Our study reveals a novel mechanism for Prkag2 cardiomyopathy, independent of glycogen storage. The role of γ2-AMP-activated protein kinase in cell growth also has broad implications in cardiac development, growth, and regeneration.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Cardiomiopatia Hipertrófica Familiar/genética , Doença de Depósito de Glicogênio/genética , Glicogênio/biossíntese , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Cardiomiopatia Hipertrófica Familiar/enzimologia , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Divisão Celular , Crescimento Celular , Modelos Animais de Doenças , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Técnicas de Introdução de Genes , Teste de Complementação Genética , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/farmacologia , Doença de Depósito de Glicogênio/metabolismo , Doença de Depósito de Glicogênio/fisiopatologia , Glicogênio Sintase/genética , Glicogênio Sintase/fisiologia , Resistência à Insulina/genética , Camundongos , Miócitos Cardíacos/metabolismo , Síndromes de Pré-Excitação/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/fisiologia
6.
Cell Metab ; 18(1): 99-105, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823480

RESUMO

Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3ß phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio/metabolismo , Glicogenólise/fisiologia , Fígado/metabolismo , Período Pós-Prandial/fisiologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Técnica Clamp de Glucose , Glucose-6-Fosfato/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Blood ; 121(7): 1209-19, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23243278

RESUMO

Patients with myeloproliferative disorders (MPDs), such as essential thrombocythemia (ET) have increased risk of thrombosis and bleeding, which are major sources of morbidity and mortality. Most MPD patients have a gain of function mutation in Janus kinase 2 (JAK2V617F), but little is known how JAK2V617F affects platelet function. Here, we demonstrate that platelets from ET patients have impaired SFLLRN-mediated fibrinogen binding and have lost the potentiating effect of thrombopoietin (which couples to JAK2) on this pathway. In contrast, SFLLRN-mediated P-selectin expression, ATP secretion, phosphorylation of the PKC substrate pleckstrin, and Ca(2+) mobilization were unaffected in JAK2V617F positive platelets. In addition, thrombopoietin-mediated JAK2 phosphorylation was unchanged, suggesting that signaling pathways activated downstream of JAK2 are impaired. Indeed, we found that platelets from JAK2V617F positive ET patients have significantly reduced phosphorylation of the PI3 kinase substrate Akt, and have reduced activation of Rap1 in response to thrombopoietin, IGF-1,ADP, SFLLRN, and thrombin. This effect was independent of Giα P2Y12 purinergic receptor function as ADP-mediated inhibition of VASP phosphorylation was unchanged. These results demonstrate that the PI3 kinase/Rap1 pathway is intrinsically impaired in platelets from JAK2V617F-positive ET patients, resulting in diminished thrombin and thrombopoietin-mediated integrin α(IIb)ß(3) activation.


Assuntos
Plaquetas/fisiologia , Fosfatidilinositol 3-Quinases/sangue , Ativação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteínas de Ligação a Telômeros/sangue , Trombocitemia Essencial/sangue , Adulto , Idoso , Substituição de Aminoácidos , Plaquetas/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Fibrinogênio/metabolismo , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/sangue , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/farmacologia , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/genética , Complexo Shelterina , Transdução de Sinais/efeitos dos fármacos , Trombina/farmacologia , Trombocitemia Essencial/genética , Trombopoetina/farmacologia
8.
J Biol Chem ; 288(6): 3918-28, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23239877

RESUMO

Glycogen synthase kinase-3 is a Ser/Thr kinase, tonically active in resting cells but inhibited by phosphorylation of an N-terminal Ser residue (Ser(21) in GSK3α and Ser(9) in GSK3ß) in response to varied external stimuli. Recent work suggests that GSK3 functions as a negative regulator of platelet function, but how GSK3 is regulated in platelets has not been examined in detail. Here, we show that early thrombin-mediated GSK3 phosphorylation (0-30 s) was blocked by PKC inhibitors and largely absent in platelets from PKCα knock-out mice. In contrast, late (2-5 min) GSK3 phosphorylation was dependent on the PI3K/Akt pathway. Similarly, early thrombin-mediated inhibition of GSK3 activity was blocked in PKCα knock-out platelets, whereas the Akt inhibitor MK2206 reduced late thrombin-mediated GSK3 inhibition and largely prevented GSK3 inhibition in PKCα knock-out platelets. More importantly, GSK3 phosphorylation contributes to platelet function as knock-in mice where GSK3α Ser(21) and GSK3ß Ser(9) were mutated to Ala showed a significant reduction in PAR4-mediated platelet aggregation, fibrinogen binding, and P-selectin expression, whereas the GSK3 inhibitor CHIR99021 enhanced these responses. Together, these results demonstrate that PKCα and Akt modulate platelet function by phosphorylating and inhibiting GSK3α/ß, thereby relieving the negative effect of GSK3α/ß on thrombin-mediated platelet activation.


Assuntos
Plaquetas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vesículas Secretórias/metabolismo , Trombina/metabolismo , Substituição de Aminoácidos , Animais , Fibrinogênio/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Compostos Heterocíclicos com 3 Anéis/farmacologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Selectina-P/biossíntese , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Piridinas/farmacologia , Pirimidinas/farmacologia , Vesículas Secretórias/genética , Trombina/farmacologia
9.
J Biol Chem ; 286(28): 24553-60, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592956

RESUMO

Protein kinase B (PKB, Akt) is a Ser/Thr kinase involved in the regulation of cell survival, proliferation, and metabolism and is activated by dual phosphorylation on Thr(308) in the activation loop and Ser(473) in the hydrophobic motif. It plays a contributory role to platelet function, although little is known about its regulation. In this study, we investigated the role of the mammalian target of rapamycin complex (mTORC)-2 in Akt regulation using the recently identified small molecule ATP competitive mTOR inhibitors PP242 and Torin1. Both PP242 and Torin1 blocked thrombin and insulin-like growth factor 1-mediated Akt Ser(473) phosphorylation with an IC(50) between 1 and 5 nm, whereas the mTORC1 inhibitor rapamycin had no effect. Interestingly, PP242 and Torin1 had no effect on Akt Thr(308) phosphorylation, Akt1 activity, and phosphorylation of the Akt substrate glycogen synthase kinase 3ß, indicating that Ser(473) phosphorylation is not necessary for Thr(308) phosphorylation and maximal Akt1 activity. In contrast, Akt2 activity was significantly reduced, concurrent with inhibition of PRAS40 phosphorylation, in the presence of PP242 and Torin1. Other signaling pathways, including phospholipase C/PKC and the MAPK pathway, were unaffected by PP242 and Torin1. Together, these results demonstrate that mTORC2 is the kinase that phosphorylates Akt Ser(473) in human platelets but that this phosphorylation is dispensable for Thr(308) phosphorylation and Akt1 activity.


Assuntos
Plaquetas/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antibióticos Antineoplásicos/farmacologia , Plaquetas/citologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Naftiridinas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Serina/metabolismo , Sirolimo/farmacologia , Trombina/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
10.
J Biol Chem ; 284(18): 12339-48, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19261611

RESUMO

The elevation of [cAMP](i) is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser(312), Ser(428), Ser(438), Ser(465), and Ser(492), in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE(1) and forskolin-induced phosphorylation of Ser(312) and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE(1)-evoked cAMP accumulation by thrombin required both G(i) and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser(312), Ser(428), Ser(438), Ser(465), and Ser(492) leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding.


Assuntos
Plaquetas/enzimologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Ativação Plaquetária/fisiologia , Proteína Quinase C/metabolismo , Proteínas 14-3-3/metabolismo , Alprostadil/farmacologia , Proteínas Sanguíneas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Hemostáticos/farmacologia , Humanos , Hidrólise/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptor PAR-1/agonistas , Receptor PAR-1/metabolismo , Trombina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA