Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(6): 151, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743149

RESUMO

Prostate cancer (PCa) is the second most common cancer and the fifth leading cause of cancer-related death among men. A comprehensive understanding of PCa progression is crucial for the development of innovative therapeutic strategies for its treatment. While WDR1 (WD-repeat domain 1) serves as a significant cofactor of actin-depolymerizing factor/cofilin, its role in PCa progression remains unknown. In this study, we demonstrated that knockdown of WDR1 in various PCa cells substantially inhibited cell proliferation, migration, and invasion in vitro, as confirmed at both the cellular and molecular levels. Moreover, the overexpression of WDR1 promoted PCa cell proliferation and metastasis in vitro. Mechanistically, we showed that the application of lithium chloride, an activator of the Wnt/ß-Catenin signaling pathway, restored the suppressive effects of WDR1 deficiency on cell proliferation and migration in PCa cells. Our findings suggest that the WDR1-ß-Catenin axis functions as an activator of the malignant phenotype and represents a promising therapeutic target for PCa treatment.


Assuntos
Progressão da Doença , Neoplasias da Próstata , Via de Sinalização Wnt , beta Catenina , Humanos , Masculino , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Via de Sinalização Wnt/fisiologia
2.
Int J Biol Macromol ; 259(Pt 1): 128891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143065

RESUMO

The toxic volatile organic compounds (VOCs), especially formaldehyde (FA), released from decoration materials pose a great threat to human health. In this study, formaldehyde adsorption performance of the specially formulated nanocellulose/chitosan aerogel (CNFCA) was investigated in simulated atmosphere. The physicochemical property of the composite aerogel was characterized, which had a large specific surface area (153.67 m2/g), a rough surface and an ultra-thin and porous structure. The composite aerogel showed excellent adsorption capacity for the formaldehyde, its theoretical maximum adsorption capacity was as high as 83.89 mg/g, and the adsorption process was more in accordance with the pseudo-second-order kinetics. The chromogenic reaction between the 4-amino-3-benzo-5-mercapto-1,2,4-triazolium (AHMT) and CNFCA was found that the color of the composite aerogel was depended on the free formaldehyde concentration. Based on this phenomenon, a colorimetric card was proposed and built to detection the formaldehyde in the atmosphere. Moreover, the adsorption mechanism research was found that the CNFCA with a multilayer structure belonged to physicochemical complex adsorption.


Assuntos
Quitosana , Humanos , Adsorção , Atmosfera , Celulose , Formaldeído
3.
Int J Biol Macromol ; 242(Pt 1): 124773, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150369

RESUMO

The increasing depletion of oil resources and the environmental problems caused by using much fossil energy in the rapid development of society. The bio-oil becomes a promising alternative energy source to fossil. However, bio-oil cannot be directly utilized, owing to its high proportion of oxygenated compounds with low calorific value and poor thermal stability. Catalytic hydrodeoxygenation (HDO) is one of the most effective methods for refining oxygenated compounds from bio-oil. HDO catalysts play a crucial role in the HDO reaction. This review emphasizes the description of the main processing of HDO and various catalytic systems for bio-oil, including noble/non-noble metal catalysts, porous organic polymer catalysts, and polar solvents. A discussion based on recent studies and evaluations of different catalytic materials and mechanisms is considered. Finally, the challenges and future opportunities for the development of catalytic hydrodeoxygenation for bio-oil upgradation are looked forward.


Assuntos
Biocombustíveis , Temperatura Alta , Biomassa , Catálise
4.
Front Cell Dev Biol ; 11: 1106638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025176

RESUMO

Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.

5.
Front Plant Sci ; 12: 810990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095984

RESUMO

Paeonia qiui is a wild species of tree peony native to China. Its leaves are purplish red from the bud germination to the flowering stage, and anthocyanin is the main pigment in purplish red leaves. However, the anthocyanin synthesis regulation mechanism in tree peony leaves remains unclear. In this study, an R2R3-MYB, PqMYB113 was identified from the leaves of P. qiui. Phylogenetic analysis revealed that PqMYB113 clustered with Liquidambar LfMYB113 and grape VvMYBA6. Subcellular location analysis showed that PqMYB113 was located in the cell nucleus. The transient reporter assay suggested that PqMYB113 was a transcriptional activator. The overexpression of PqMYB113 in Arabidopsis thaliana and tobacco (Nicotiana tabacum) resulted in increased anthocyanin accumulation and the upregulation of CHS, F3H, F3'H, DFR, and ANS. The dual luciferase reporter assay showed that PqMYB113 could activate the promoters of PqDFR and PqANS. Bimolecular fluorescence complementation assays and yeast two-hybrid assays suggested that PqMYB113 could form a ternary MBW complex with PqbHLH1 and PqWD40 cofactors. These results provide insight into the regulation of anthocyanin biosynthesis in tree peony leaves.

6.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197393

RESUMO

Eukaryotic translation elongation factors are implicated in protein synthesis across different living organisms, but their biological functions in the pathogenesis of cucumber mosaic virus (CMV) and tobacco rattle virus (TRV) infections are poorly understood. Here, we isolated and characterized a cDNA clone, LreEF1A4, encoding the alpha subunit of elongation factor 1, from a CMV-elicited suppression subtractive hybridization library of Lilium regale. The infection tests using CMV remarkably increased transcript abundance of LreEF1A4; however, it also led to inconsistent expression profiles of three other LreEF1A homologs (LreEF1A1-3). Protein modelling analysis revealed that the amino acid substitutions among four LreEF1As may not affect their enzymatic functions. LreEF1A4 was ectopically overexpressed in petunia (Petunia hybrida), and transgenic plants exhibited delayed leaf and flower senescence, concomitant with increased transcription of photosynthesis-related genes and reduced expression of senescence-associated genes, respectively. A compromised resistance to CMV and TRV infections was found in transgenic petunia plants overexpressing LreEF1A4, whereas its overexpression resulted in an enhanced tolerance to salt and drought stresses. Taken together, our data demonstrate that LreEF1A4 functions as a positive regulator in viral multiplication and plant adaption to high salinity and dehydration.


Assuntos
Cucumovirus/metabolismo , Resistência à Doença , Lilium/genética , Fatores de Alongamento de Peptídeos , Petunia , Proteínas de Plantas , Vírus de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tolerância ao Sal , Cucumovirus/genética , Desidratação/genética , Desidratação/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Petunia/genética , Petunia/metabolismo , Petunia/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia
7.
J Nanosci Nanotechnol ; 18(4): 2993-2999, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442985

RESUMO

In this work, a simple room-temperature phosphorescence (RTP) method was first proposed to detect adriamycin, by using a functional material of Mn doped ZnS quantum dots (Mn-ZnS QDs) composited with poly(diallyldimethylammonium chloride) (PDDA). After PDDA was associated to the Mn-ZnS QDs, the RTP intensity was significantly enhanced. As a result, Mn-ZnS QDs/PDDA nanoassemblies greatly improve the adriamycin detection ability of QDs and provide an important method for developing more effective and sensitive adriamycin detection sensor. The method based upon RTP has a linear range from 0.5 to 64.0 µM with a detection limit (3σ/s) for adriamycin of 0.45 µM. The developed method was further successfully applied to detect adriamycin in human serum samples (diluted 50 times) with satisfactory results, and the recovery ranged from 98.3 to 101.3.


Assuntos
Antibióticos Antineoplásicos/análise , Doxorrubicina/análise , Pontos Quânticos , Sulfetos/química , Compostos de Zinco/química , Humanos , Medições Luminescentes , Manganês , Temperatura
8.
Molecules ; 22(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292771

RESUMO

Paeonia qiui is a wild species of tree peony. P. qiui has good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in P. qiui is unclear. This study analyzes the anthocyanin level and transcriptome of two different color stages in P. qiui leaf. The purplish-red leaf stage is rich in anthocyanin, while the green leaf has very low levels of anthocyanin. Transcriptome analysis reveals that 6678 differentially-expressed genes (DEGs) are up-regulated, and 14,667 are down-regulated in the purplish-red leaf. Among these DEGs, 40 MYB (v-myb avian myeloblastosis viral oncogene homolog) genes, 40 bHLH (MYC-like basic helix-loop-helix) genes, and 15 WD40 (WD-repeat protein) genes were found. Based on phylogenetic and alignment analysis with the deduced amino acid sequences with known transcription factors, Unigene0024459 (MYB1) is likely the R2R3-MYB that promotes anthocyanin biosynthesis; Unigene0050761 (MYB2) is likely the R2R3-MYB that represses anthocyanin biosynthesis; Unigene0005081 (bHLH1) and Unigene0006146 (WD40-1) are likely the bHLH and WD40 that participate in regulating anthocyanin biosynthesis. Additionally, quantitative RT-PCR results confirmed the transcriptome analyses for key genes.


Assuntos
Antocianinas/biossíntese , Perfilação da Expressão Gênica/métodos , Paeonia/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Antocianinas/genética , Cor , Biblioteca Gênica , Genes de Plantas , Paeonia/genética , Filogenia , Pigmentação , Folhas de Planta/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ativação Transcricional , Transcriptoma
9.
Rev Sci Instrum ; 86(2): 025106, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725887

RESUMO

In this paper, a novel, simple, rapid, and low-cost detection device for lung cancer related Volatile Organic Compounds (VOCs) was constructed. For this task, a sensor array based on cross-responsive mechanism was designed. A special gas chamber was made to insure sensor array exposed to VOCs sufficiently and evenly, and FLUENT software was used to simulate the performance of the gas chamber. The data collection and processing system was used to detect fluorescent changes of the sensor arrays before and after reaction, and to extract unique patterns of the tested VOCs. Four selected VOCs, p-xylene, styrene, isoprene, and hexanal, were detected by the proposed device. Unsupervised pattern recognition methods, hierarchical cluster analysis and principal component analysis, were used to analyze data. The results showed that the methods could 100% discriminate the four VOCs. What is more, combined with artificial neural network, the correct rate of quantitative detection was up to 100%, and the device obtained responses at concentrations below 50 ppb. In conclusion, the proposed detection device showed excellent selectivity and discrimination ability for the VOCs related to lung cancer. Furthermore, our preliminary study demonstrated that the proposed detection device has brilliant potential application for early clinical diagnosis of lung cancer.


Assuntos
Técnicas de Química Analítica/instrumentação , Neoplasias Pulmonares/química , Compostos Orgânicos Voláteis/análise , Algoritmos , Técnicas de Química Analítica/economia , Análise por Conglomerados , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Rotação , Espectrometria de Fluorescência , Fatores de Tempo , Compostos Orgânicos Voláteis/química
10.
J Cardiovasc Pharmacol ; 57(3): 294-301, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21266918

RESUMO

OBJECTIVE: 20-Hydroxyeicosatetraenoic acid (20-HETE), a [omega]-hydroxylation product of arachidonic acid catalyzed by cytochrome P450 4A, may play a role in the cardiovascular system. It is well known that cytochrome P450 [omega]-hydroxylase inhibitors markedly reduced the cardiac ischemia reperfusion injury. However, the direct effect of 20-HETE on cardiomyocytes is still poorly investigated. Here, we studied the effect of 20-HETE on cardiomyocyte apoptosis and the apoptosis-associated signaling pathways. METHODS AND RESULTS: The cardiomyocyte apoptosis was measured by fluorescein isothiocyanate conjugated annexin V/propidium iodide double staining cytometry, indicating that the percentage of early apoptotic cells increased from 15.6% +/- 2.6% to 25.5% +/- 2.5% in control and 20-HETE-treated cells, respectively. The mitochondrial membrane potential ([DELTA][PSI]m) was measured by detecting the ratio of JC-1 green/red emission intensity. A significant decrease in the ratio was observed after treatment with 20-HETE for 24 hours in comparison with control group, suggesting the disruptive effect of 20-HETE on mitochondrial [DELTA][PSI]m. In addition, 20-HETE stimulated caspase-3 activity and Bax mRNA expression in cardiomyocytes. In contrast, the Bcl-2 mRNA levels were significantly decreased by 20-HETE treatment. CONCLUSION: These results demonstrate that 20-HETE induces cardiomyocyte apoptosis by activation of several intrinsic apoptotic pathways. The 20-HETE-induced apoptosis could contribute to the cytochrome P450 [omega]-hydroxylase-dependent cardiac injure during cardiac ischemia-reperfusion.


Assuntos
Amidinas/farmacologia , Apoptose/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450 , Ácidos Hidroxieicosatetraenoicos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Ácido Araquidônico/metabolismo , Benzimidazóis , Carbocianinas , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Corantes Fluorescentes , Genes bcl-2/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais , Coloração e Rotulagem , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA