Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(26): e202218148, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37103924

RESUMO

The frequent mutation of KRAS oncogene in some of the most lethal human cancers has spurred incredible efforts to develop KRAS inhibitors, yet only one covalent inhibitor for the KRASG12C mutant has been approved to date. New venues to interfere with KRAS signaling are desperately needed. Here, we report a "localized oxidation-coupling" strategy to achieve protein-specific glycan editing on living cells for disrupting KRAS signaling. This glycan remodeling method exhibits excellent protein and sugar specificity and is applicable to different donor sugars and cell types. Attachment of mannotriose to the terminal galactose/N-acetyl-D-galactosamine epitopes of integrin αv ß3 , a membrane receptor upstream of KRAS, blocks its binding to galectin-3, suppresses the activation of KRAS and downstream effectors, and mitigates KRAS-driven malignant phenotypes. Our work represents the first successful attempt to interfere with KRAS activity by manipulating membrane receptor glycosylation.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/patologia , Mutação , Polissacarídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
2.
Chem Asian J ; 17(16): e202200342, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35713953

RESUMO

Intravesical instillation of chemotherapeutic drugs such as epirubicin (EPI) is routinely used to prevent tumor recurrence and progression after transurethral resection of bladder tumor. However, the lack of tumor selectivity often causes severe damage to normal bladder urothelium leading to intolerable side effects. Here, we analyzed abnormal changes in glycosylation in bladder cancer and identified mannose as the most aberrantly expressed glycan on the surface of bladder cancer cell lines and human bladder tumor tissues. We then constructed a lectin-drug conjugate by linking concanavalin A (ConA) - a lectin that specifically binds to mannose, with EPI through a pH-sensitive linker. This ConA-EPI conjugate conferred EPI with mannose-targeting ability and selectively internalized cancer cells in vitro. This conjugate showed selective cytotoxicity to cancer cells in vitro and better antitumor activity in an orthotopic mouse model of bladder cancer. Our lectin-drug conjugation strategy makes targeted intravesical chemotherapy of bladder cancer possible.


Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Antibióticos Antineoplásicos , Concanavalina A/farmacologia , Epirubicina/efeitos adversos , Humanos , Manose , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia
3.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35361729

RESUMO

BACKGROUND: Bladder cancer is a common disease worldwide with most patients presenting with the non-muscle-invasive form (NMIBC) at initial diagnosis. Postoperational intravesical instillation of BCG is carried out for patients with high-risk disease to reduce tumor recurrence and progression to muscle invasive disease. However, BCG can also have side effects or be ineffective in some patients because it cannot enter the cancer cells. Thus, to improve the efficacy of BCG immunotherapy is the long-term pursuit of the bladder cancer field. METHODS: To increase the adhesion of BCG to the urothelium we overexpressed FimH, a mannose binding protein naturally used by uropathogenic Escherichia coli to adhere to human urothelium, onto the surface of BCG. The adhesion/internalization ability of rBCG-S.FimH was examined in mouse bladder by fluorescence microscopy. Preclinical evaluation of antitumor efficacy was carried out in orthotopic mouse models of bladder cancer and in human peripheral blood mononuclear cells. Mechanistic studies were carried out using toll-like receptor 4 (TLR4) knockout mice. Immune cells and cytokines in the serum, tumor and lymph nodes were analyzed by flow cytometry, PCR, ELISA and ELISPOT. RESULTS: rBCG-S.FimH exhibited markedly improved adhesion and more rapid internalization into urothelial cells than wild-type BCG, resulting in more potent antitumor activity in orthotopic murine models of bladder cancer. To our surprise, rBCG-S.FimH elicited a much more prominent Th1-biased immune response known to be positively correlated with BCG efficacy. Mechanistic studies using TLR4 knockout mouse showed that rBCG-S.FimH could induce enhanced dendritic cell activation and tumor antigen-specific immune response in a TLR4-dependent manner. Furthermore, human peripheral blood mononuclear cells stimulated by rBCG-S.FimH also showed better tumoricidal effects than those using wild-type BCG. CONCLUSION: rBCG-S.FimH is a novel BCG strain with significantly improved efficacy against bladder cancer. Since intravesical BCG immunotherapy is the first-line treatment for NMIBC, which accounts for more than 70% of all bladder cancer cases, our results provide a compelling rationale for clinical development.


Assuntos
Vacina BCG , Neoplasias da Bexiga Urinária , Animais , Humanos , Imunoterapia/métodos , Leucócitos Mononucleares , Manose , Camundongos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
Cancer Res ; 82(6): 1128-1139, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35064018

RESUMO

Bladder cancer is common worldwide, with most patients presenting with nonmuscle invasive disease. Multiple intravesical recurrences lead to reduced quality of life and high costs for patients with this form of bladder cancer. Intravesical chemotherapy aimed at reducing recurrence is the standard-of-care but has significant side effects from nonspecific cytotoxicity to normal urothelium. Importantly, toxicity limits doses that can be administered. Thus, tumor-specific drug targeting could reduce toxicity and enhance effectiveness by allowing higher doses. Here, using cell internalization systematic evolution of ligands by exponential enrichment (SELEX), we identify a novel bladder cancer-specific, chemically modified nucleic acid aptamer that can be preferentially internalized into tumor cells but not normal urothelial cells. The 35-nucleotide B1 aptamer is internalized into bladder cancer cells through clathrin-mediated endocytosis and macropinocytosis. As proof of principle, a B1-guided DNA nanotrain delivery vehicle for epirubicin was constructed as a targeted intravesical chemotherapy. The B1-nanotrain-epirubicin construct exhibited selective cytotoxicity towards bladder cancer cells and outperformed epirubicin in murine orthotopic xenograft models of human bladder cancer. This aptamer-based delivery system makes targeted chemotherapy possible for bladder cancer, providing a compelling rationale for clinical development. SIGNIFICANCE: These findings identify a bladder cancer-specific aptamer that can be used for targeted delivery of chemotherapy, potentially reducing toxicity and enhancing therapeutic efficacy.


Assuntos
Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Epirubicina/uso terapêutico , Humanos , Camundongos , Qualidade de Vida , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
5.
Biomed Res Int ; 2021: 6680036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997040

RESUMO

BACKGROUNDS: The dysregulated long noncoding RNAs (lncRNAs) have been described to be crucial regulators in the progression of ovarian carcinoma. The infiltration status of immune cells is also related to the clinical outcomes in ovarian carcinoma. The present research is aimed at constructing an immune-associated lncRNA signature with potential prognostic value for ovarian carcinoma patients. METHODS: We obtained 379 ovarian carcinoma cases with available clinical data and transcriptome data from The Cancer Genome Atlas database to evaluate the infiltration status of immune cells, thereby generating high and low immune cell infiltration groups. According to the expression of the immune-associated lncRNA signature, the risk score of each case was calculated. The high- and low-risk groups were classified using the median risk score as threshold. RESULTS: A total of 169 immune-associated lncRNAs that differentially expressed in ovarian carcinoma were included. According to the Lasso regression analysis and Cox univariate and multivariate analyses, 5 immune-associated lncRNAs, including AC134312.1, AL133467.1, CHRM3-AS2, LINC01722, and LINC02207, were identified as a predictive signature with significant prognostic value in ovarian carcinoma. The following Kaplan-Meier analysis, ROC analysis, and Cox univariate and multivariate analyses further suggested that the predicted signature may be an independent prognosticator for patients with ovarian carcinoma. The following gene set enrichment analysis showed that this 5 immune-associated lncRNAs signature was significantly related to the hedgehog pathway, basal cell carcinoma, Wnt signaling pathway, cytokine receptor interaction, antigen processing and presentation, and T cell receptor pathway. CONCLUSION: : This study suggested a predictive model with 5 immune-associated lncRNAs that has an independent prognostic value for ovarian carcinoma patients.


Assuntos
Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , RNA Longo não Codificante/imunologia , Transdução de Sinais/imunologia , Transcriptoma/imunologia , Biologia Computacional , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA