Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1811, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383171

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. Only a fraction of NSCLC harbor actionable driver mutations and there is an urgent need for patient-derived model systems that will enable the development of new targeted therapies. NSCLC and other cancers display profound proteome remodeling compared to normal tissue that is not predicted by DNA or RNA analyses. Here, we generate 137 NSCLC patient-derived xenografts (PDXs) that recapitulate the histology and molecular features of primary NSCLC. Proteome analysis of the PDX models reveals 3 adenocarcinoma and 2 squamous cell carcinoma proteotypes that are associated with different patient outcomes, protein-phosphotyrosine profiles, signatures of activated pathways and candidate targets, and in adenocarcinoma, stromal immune features. These findings portend proteome-based NSCLC classification and treatment and support the PDX resource as a viable model for the development of new targeted therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Thorac Oncol ; 17(2): 277-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648945

RESUMO

INTRODUCTION: Mutations in BRAF occur in 2% to 4% of patients with lung adenocarcinoma. Combination dabrafenib and trametinib, or single-agent vemurafenib is approved only for patients with cancers driven by the V600E BRAF mutation. Targeted therapy is not currently available for patients harboring non-V600 BRAF mutations. METHODS: A lung adenocarcinoma patient-derived xenograft model (PHLC12) with wild-type and nonamplified EGFR was tested for response to EGFR tyrosine kinase inhibitors (TKIs). A cell line derived from this model (X12CL) was also used to evaluate drug sensitivity and to identify potential drivers by small interfering RNA knockdown. Kinase assays were used to test direct targeting of the candidate driver by the EGFR TKIs. Structural modeling including, molecular dynamics simulations, and binding assays were conducted to explore the mechanism of off-target inhibition by EGFR TKIs on the model 12 driver. RESULTS: Both patient-derived xenograft PHLC12 and the X12CL cell line were sensitive to multiple EGFR TKIs. The BRAFG469V mutation was found to be the only known oncogenic mutation in this model. Small interfering RNA knockdown of BRAF, but not the EGFR, killed X12CL, confirming BRAFG469V as the oncogenic driver. Kinase activity of the BRAF protein isolated from X12CL was inhibited by treatment with the EGFR TKIs gefitinib and osimertinib, and expression of BRAFG469V in non-EGFR-expressing NR6 cells promoted growth in low serum condition, which was also sensitive to EGFR TKIs. Structural modeling, molecular dynamic simulations, and in vitro binding assays support BRAFG469V being a direct target of the TKIs. CONCLUSIONS: Clinically approved EGFR TKIs can be repurposed to treat patients with non-small cell lung cancer harboring the BRAFG469V mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
3.
Transl Lung Cancer Res ; 9(5): 2214-2232, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209645

RESUMO

Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these models, and review their relative advantages and limitations in different oncologic research applications. We further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and improve their clinical predictive power.

4.
Proc Natl Acad Sci U S A ; 117(22): 12101-12108, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414921

RESUMO

Membrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations. Here, we report NMR studies of the KRAS:CRAF RBD-CRD complex. We found that the nucleotide-dependent KRAS-RBD interaction results in transient electrostatic interactions between KRAS and CRD, and we mapped the membrane interfaces of the CRD, RBD-CRD, and the KRAS:RBD-CRD complex. RBD-CRD exhibits dynamic interactions with the membrane through the canonical CRD lipid-binding site (CRD ß7-8), as well as an alternative interface comprising ß6 and the C terminus of CRD and ß2 of RBD. Upon complex formation with KRAS, two distinct states were observed by NMR: State A was stabilized by membrane association of CRD ß7-8 and KRAS α4-α5 while state B involved the C terminus of CRD, ß3-5 of RBD, and part of KRAS α5. Notably, α4-α5, which has been proposed to mediate KRAS dimerization, is accessible only in state B. A cancer-associated mutation on the state B membrane interface of CRAF RBD (E125K) stabilized state B and enhanced kinase activity and cellular MAPK signaling. These studies revealed a dynamic picture of the assembly of the KRAS-CRAF complex via multivalent and dynamic interactions between KRAS, CRAF RBD-CRD, and the membrane.


Assuntos
Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Cisteína/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA