Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomaterials ; 309: 122608, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38744189

RESUMO

Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.

2.
Food Funct ; 15(9): 4970-4982, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606509

RESUMO

Inhibition of ferroptosis in intestinal epithelial cells serves as an attractive target for the development of therapeutic strategies for colitis. Pinobanksin, one of the main flavonoids derived from propolis, possesses significant anti-inflammatory effects and inhibits the cell death of several cell lines. Here, we evaluated whether pinobanksin influenced colitis by modulation of epithelial ferroptosis. Mice treated with 2.5% DSS dissolved in sterile distilled water were established for an acute colitis model. The mitochondrial morphology, colonic iron level, lipid peroxidation products MDA/4-HNE, and lipid reactive oxygen species levels were measured to assess ferroptosis in epithelial cells. RNA-seq and functional analyses were performed to reveal key genes mediating pinobanksin-exerted modulation of ferroptosis. We found that pinobanksin, at different doses, induced significant anti-colitis effects and inhibited the elevated ferroptosis in colonic epithelial cells isolated from DSS-treated mice largely by activating GPX4 (negative regulator of ferroptosis). Furthermore, RNA-seq assays indicated that pinobanksin significantly increased the cystine transporter SLC7A11 in colonic tissues from mice with colitis. Depletion of SLC7A11 largely blocked pinobanksin-induced promotion of cystine uptake/glutathione biosynthesis and suppression of ferroptosis in epithelial cells from mice with colitis or IEC-6 cells pretreated with RSL3. Altogether, pinobanksin alleviated DSS-induced colitis largely by inhibition of ferroptosis in epithelial cells. Activation of SLC7A11 by pinobanksin resulted in the promotion of cystine uptake and enhancement of glutathione biosynthesis. This work will provide novel guidance for the clinical use of pinobanksin to treat colitis through inhibition of epithelial ferroptosis.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Colite , Ferroptose , Glutationa , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Glutationa/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Endogâmicos C57BL , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos , Masculino , Flavonoides/farmacologia , Modelos Animais de Doenças , Humanos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Biol Macromol ; 263(Pt 2): 130307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382784

RESUMO

N-acylethanolamine acid amidase (NAAA) is a nucleophilic lysosomal cysteine hydrolase, which primarily mediates the hydrolytic inactivation of endogenous palmitoylethanolamide (PEA), which further influences the inflammatory process by regulating peroxisome proliferator-activated receptor-α (PPAR-α). Herein, a novel lysosome (Lyso)-targeting fluorescent probe (i.e., PMBD) was designed and synthesized for detecting endogenous NAAA selectively and sensitively, allowing real-time visual monitoring of endogenous NAAA in living cells. Moreover, PMBD can target Lyso with a high colocalization in Lyso Tracker. Finally, a high-throughput assay method for NAAA inhibitor screening was established using PMBD, and the NAAA-inhibitory effects of 42 anti-inflammatory Traditional Chinese medicines were evaluated. A novel potent inhibitor of NAAA, ellagic acid, was isolated from Cornus officinalis, which can suppress LPS-induced iNOS upregulation and NO production in RAW264.7 cells that display anti-inflammatory activities. PMBD, a novel Lyso-targeting fluorescent probe for visually imaging NAAA, could serve as a useful molecular tool for exploring the physiological functions of NAAA and drug development based on NAAA-related diseases.


Assuntos
Anti-Inflamatórios , Corantes Fluorescentes , Anti-Inflamatórios/farmacologia , Desenvolvimento de Medicamentos , Amidoidrolases , Lisossomos , Inibidores Enzimáticos/farmacologia
6.
J Hazard Mater ; 458: 131890, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406527

RESUMO

Air pollution represented by particulate matter 2.5 (PM2.5) is closely related to diseases of the respiratory system. Although the understanding of its mechanism is limited, pulmonary inflammation is closely correlated with PM2.5-mediated lung injury. Soluble epoxide hydrolase (sEH) and epoxy fatty acids play a vital role in the inflammation. Herein, we attempted to use the metabolomics of oxidized lipids for analyzing the relationship of oxylipins with lung injury in a PM2.5-mediated mouse model, and found that the cytochrome P450 oxidases/sEH mediated metabolic pathway was involved in lung injury. Furthermore, the sEH overexpression was revealed in lung injury mice. Interestingly, sEH genetic deletion or the selective sEH inhibitor TPPU increased levels of epoxyeicosatrienoic acids (EETs) in lung injury mice, and inactivated pulmonary macrophages based on the MAPK/NF-κB pathway, resulting in protection against PM2.5-mediated lung injury. Additionally, a natural sEH inhibitor luteolin from Inula japonica displayed a pulmonary protective effect towards lung injury mediated by PM2.5 as well. Our results are consistent with the sEH message and protein being both a marker and mechanism for PM2.5-induced inflammation, which suggest its potential as a pharmaceutical target for treating diseases of the respiratory system.


Assuntos
Lesão Pulmonar , Pneumonia , Camundongos , Animais , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Inflamação , Pulmão/metabolismo
7.
Sci Adv ; 9(26): eade0387, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390202

RESUMO

P23, historically known as a heat shock protein 90 (HSP90) co-chaperone, exerts some of its critical functions in an HSP90-independent manner, particularly when it translocates into the nucleus. The molecular nature underlying how this HSP90-independent p23 function is achieved remains as a biological mystery. Here, we found that p23 is a previously unidentified transcription factor of COX-2, and its nuclear localization predicts the poor clinical outcomes. Intratumor succinate promotes p23 succinylation at K7, K33, and K79, which drives its nuclear translocation for COX-2 transcription and consequently fascinates tumor growth. We then identified M16 as a potent p23 succinylation inhibitor from 1.6 million compounds through a combined virtual and biological screening. M16 inhibited p23 succinylation and nuclear translocation, attenuated COX-2 transcription in a p23-dependent manner, and markedly suppressed tumor growth. Therefore, our study defines p23 as a succinate-activated transcription factor in tumor progression and provides a rationale for inhibiting p23 succinylation as an anticancer chemotherapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Ácido Succínico , Fatores de Transcrição/genética , Ciclo-Oxigenase 2/genética , Piridinolcarbamato , Carcinogênese/genética , Transformação Celular Neoplásica , Succinatos , Adenocarcinoma de Pulmão/genética , Chaperonas Moleculares/genética , Proteínas de Choque Térmico HSP90/genética , Neoplasias Pulmonares/genética
8.
J Ethnopharmacol ; 312: 116449, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37023835

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jinhongtang as a traditional Chinese medicine (TCM) formula, has been widely used as a clinical adjuvant in the treatment of acute abdominal diseases and sepsis. Clinical benefits of the concurrent use of Jinhongtang and antibiotics have been observed, however, the mechanism has not been fully understood. AIM OF THE STUDY: The present study aimed to explore the effect of Jinhongtang on the antibacterial activity of Imipenem/Cilastatin and to clarify the underlying mechanism of herb-drug interaction (HDI). MATERIALS AND METHODS: A mouse model of sepsis induced by Staphylococcus aureus (S. aureus) was used to evaluate the pharmacodynamic interaction in vivo. In vitro antibacterial activity of Imipenem/Cilastatin was studied by determining minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Pharmacokinetic interaction was investigated by pharmacokinetic studies in rats and uptake assays using OAT1/3-HEK293 cells. The main constituents ingested into blood of rats were qualitatively identified by UHPLC-Q-TOF-MS. RESULTS: Mice treated by Imipenem/Cilastatin and Jinhongtang exhibited higher survival rate, lower bacteria load and less inflammation in blood and lung tissues, compared with those treated by Imipenem/Cilastatin alone after injection of S. aureus. However, MIC and MBC of Imipenem/Cilastatin against S. aureus in vitro were not significantly changed in the presence of Jinhongtang. On the contrary, Jinhongtang increased the plasma concentration of Imipenem and decreased its urinary excretion in rats. CLr of Imipenem was reduced by 58.5%, while its half-life (t1/2) was prolonged for approximate 1.2 times after coadministered Jinhongtang. Furthermore, the extracts of Jinhongtang, single herb in the prescription, and main absorbable constituents inhibited cellular uptake of probe substrates and Imipenem by OAT1/3-HEK293 cells to different extents. Among them, rhein exhibited the strongest inhibition capacity with IC50 values of 0.08 ± 0.01 µM (OAT1) and 2.86 ± 0.28 µM (OAT3). Moreover, coadministration of rhein also significantly enhanced the antibacterial activity of Imipenem/Cilastatin in sepsis mice. CONCLUSION: Concomitant administration of Jinhongtang enhanced antibacterial activity of Imipenem/Cilastatin in sepsis mice induced by S. aureus through reducing renal elimination of Imipenem via inhibition of OATs. Our investigation provided the insight of Jinhongtang as an effective supplement to enhance the antibacterial activity of Imipenem/Cilastatin and can be useful for future clinical studies.


Assuntos
Transportadores de Ânions Orgânicos , Sepse , Humanos , Ratos , Animais , Camundongos , Interações Ervas-Drogas , Cilastatina/farmacocinética , Cilastatina/uso terapêutico , Staphylococcus aureus , Células HEK293 , Combinação Imipenem e Cilastatina/uso terapêutico , Imipenem/farmacocinética , Imipenem/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sepse/tratamento farmacológico , Combinação de Medicamentos
9.
Int J Biol Sci ; 19(1): 294-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594097

RESUMO

Acute kidney injury (AKI) is a pathological condition characterized by a rapid decrease in glomerular filtration rate and nitrogenous waste accumulation during hemodynamic regulation. Alisol B, from Alisma orientale, displays anti-tumor, anti-complement, and anti-inflammatory effects. However, its effect and action mechanism on AKI is still unclear. Herein, alisol B significantly attenuated cisplatin (Cis)-induced renal tubular apoptosis through decreasing expressions levels of cleaved-caspase 3 and cleaved-PARP and the ratio of Bax/Bcl-2 depended on the p53 pathway. Alisol B also alleviated Cis-induced inflammatory response (e.g. the increase of ICAM-1, MCP-1, COX-2, iNOS, IL-6, and TNF-α) and oxidative stress (e.g. the decrease of SOD and GSH, the decrease of HO-1, GCLC, GCLM, and NQO-1) through the NF-κB and Nrf2 pathways. In a target fishing experiment, alisol B bound to soluble epoxide hydrolase (sEH) as a direct cellular target through the hydrogen bond with Gln384, which was further supported by inhibition kinetics and surface plasmon resonance (equilibrium dissociation constant, K D = 1.32 µM). Notably, alisol B enhanced levels of epoxyeicosatrienoic acids and decreased levels of dihydroxyeicosatrienoic acids, indicating that alisol B reduced the sEH activity in vivo. In addition, sEH genetic deletion alleviated Cis-induced AKI and abolished the protective effect of alisol B in Cis-induced AKI as well. These findings indicated that alisol B targeted sEH to alleviate Cis-induced AKI via GSK3ß-mediated p53, NF-κB, and Nrf2 signaling pathways and could be used as a potential therapeutic agent in the treatment of AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/toxicidade , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Apoptose , Rim/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
10.
J Adv Res ; 49: 103-114, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36198381

RESUMO

INTRODUCTION: Viruses have been reported as inducers of tumorigenesis. Little studies have explored the impact of the gut virome on the progression of colorectal cancer. However, there is still a problem with the repeatability of viral signatures across multiple cohorts. OBJECTIVES: The present study aimed to reveal the repeatable gut vial signatures of colorectal cancer and adenoma patients and decipher the potential of viral markers in disease risk assessment for diagnosis. METHODS: 1,282 available fecal metagenomes from 9 published studies for colorectal cancer and adenoma were collected. A gut viral catalog was constructed via a reference-independent approach. Viral signatures were identified by cross-cohort meta-analysis and used to build predictive models based on machine learning algorithms. New fecal samples were collected to validate the generalization of predictive models. RESULTS: The gut viral composition of colorectal cancer patients was drastically altered compared with healthy, as evidenced by changes in some Siphoviridae and Myoviridae viruses and enrichment of Microviridae, whereas the virome variation in adenoma patients was relatively low. Cross-cohort meta-analysis identified 405 differential viruses for colorectal cancer, including several phages of Porphyromonas, Fusobacterium, and Hungatella that were enriched in patients and some control-enriched Ruminococcaceae phages. In 9 discovery cohorts, the optimal risk assessment model obtained an average cross-cohort area under the curve of 0.830 for discriminating colorectal cancer patients from controls. This model also showed consistently high accuracy in 2 independent validation cohorts (optimal area under the curve, 0.906). Gut virome analysis of adenoma patients identified 88 differential viruses and achieved an optimal area under the curve of 0.772 for discriminating patients from controls. CONCLUSION: Our findings demonstrate the gut virome characteristics in colorectal cancer and adenoma and highlight gut virus-bacterial synergy in the progression of colorectal cancer. The gut viral signatures may be new targets for colorectal cancer treatment. In addition, high repeatability and predictive power of the prediction models suggest the potential of gut viral biomarkers in non-invasive diagnostic tests of colorectal cancer and adenoma.


Assuntos
Adenoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Vírus , Humanos , Viroma , Adenoma/diagnóstico , Medição de Risco , Biomarcadores , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia
11.
Front Chem ; 11: 1229199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293248

RESUMO

Melatonin (Mel) is an endogenous active molecule whose metabolism progress significantly influences its bioactivity. However, the detailed metabolic pathway of Mel in the pathological state has not yet been fully illustrated. In this study, 16 metabolites of Mel in cancer cells and human liver microsomes were identified, of which seven novel metabolites were newly discovered. Among them, 2-hydroxymelatonin (2-O-Mel), as the major metabolite in cancer cells, was revealed for the first time, which was different from the metabolite found in the human liver. Furthermore, CYP1A1/1A2- and reactive oxygen species (ROS)-mediated 2-hydroxylation reactions of Mel were verified to be the two metabolic pathways in the liver and cancer cells, respectively. ROS-dependent formation of 2-O-Mel was the major pathway in cancer cells. Furthermore, the underlying catalytic mechanism of Mel to 2-O-Mel in the presence of ROS was fully elucidated using computational chemistry analysis. Therefore, the generation of 2-O-Mel from Mel could serve as another index for the endogenous reactive oxygen level. Finally, based on the ROS-dependent production of 2-O-Mel, Mel was successfully used for detecting the oxygen-carrying capacity of hemoglobin in human blood. Our investigation further enriched the metabolic pathway of Mel, especially for the ROS-dependent formation of 2-O-Mel that serves as a diagnostic and therapeutic target for the rational use of Mel in clinics.

12.
Phytomedicine ; 107: 154380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150346

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE: This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS: A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS: TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 µg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION: These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ácido Araquidônico/metabolismo , Expectorantes/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Phytomedicine ; 107: 154377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116200

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening lung disease and characterized by pulmonary edema and atelectasis. Inula japonica Thunb. is a commonly used traditional Chinese medicine for the treatment of lung diseases. However, the potential effect and mechanism of total terpenoids of I. japonica (TTIJ) on ALI remain obscure. PURPOSE: This study focused on the protective effect of TTIJ on lipopolysaccharide (LPS)-induced ALI in mice and its potential mechanism. STUDY DESIGN AND METHODS: A mouse model of ALI was established by intratracheal instillation of LPS to investigate the protective effect of TTIJ. RNA-seq and bioinformatics were then performed to reveal the underlying mechanism. Finally, western blot and real-time qPCR were used to verify the effects of TTIJ on the inflammation and oxidative stress. RESULTS: TTIJ notably attenuated LPS-induced histopathological changes of lung. The RNA-seq result suggested that the protective effect of TTIJ on LPS-induced ALI were associated with the Toll-like receptor 4 (TLR4) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Pretreatment with TTIJ significantly reduced the inflammation and oxidative stress via regulating levels of pro-inflammatory and anti-oxidative cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione (GSH), in LPS-induced ALI mice. TTIJ treatment could suppress the cyclooxygenase-2 (COX-2) expression level and the phosphorylation of p65, p38, ERK, and JNK through the inactivation of the MAPK/NF-κB signaling pathway in a TLR4-independent manner. Meanwhile, TTIJ treatment upregulated expression levels of proteins involved in the Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase-1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM), via activating the Nrf2 receptor, which was confirmed by the luciferase assay. CONCLUSION: TTIJ could activate the Nrf2 receptor to alleviate the inflammatory response and oxidative stress in LPS-induced ALI mice, which suggested that TTIJ could serve as the potential agent in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Phytochemistry ; 202: 113365, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35940425

RESUMO

Capsaicin widely exists in the Capsicum genus (e.g., hot peppers) and is commonly used as a food additive or medicinal material. In this work, microbial transformation of capsaicin was performed based on the three cultivated human intestinal fungi. Fourteen metabolites were obtained, and their chemical structures were elucidated by spectroscopic data analysis, including 13 compounds with undescribed structures. Hydroxylation, lactylation, succinylation, citric acylation, and acetylation were observed for these microbial metabolites derived from capsaicin, which indicated diverse catalytic characteristics of human intestinal fungi. In an in vitro bioassay, four metabolites and capsaicin inhibited the activity of lysine-specific demethylase 1 (LSD1) with a more than 70% inhibitory rate at 10 µM. In particular, 9,5'-dihydroxycapsaicin displayed the strongest inhibitory effect with an IC50 of 1.52 µM. Therefore, capsaicin analogs displayed potential application as LSD1 inhibitors against the invasion and migration of cancer cells.


Assuntos
Capsaicina , Capsicum , Capsaicina/metabolismo , Capsaicina/farmacologia , Capsicum/química , Capsicum/metabolismo , Capsicum/microbiologia , Fungos/metabolismo , Histona Desmetilases/metabolismo , Humanos , Lisina/metabolismo
15.
Food Funct ; 13(18): 9470-9480, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35983876

RESUMO

Inhibition of ferroptosis in intestinal epithelial cells ameliorates clinical symptoms and improves endoscopic presentations in inflammatory bowel disease (IBD). Licorice is used worldwide in food and medicine fields. Liquiritin, a flavonoid component in licorice, is an effective substance used as an anti-inflammatory, antioxidant food that has been shown to improve chemically induced colitis. Herein we evaluated the therapeutic effects of liquiritin on colitis and determined whether liquiritin could affect colitis by modulating ferroptosis in epithelial cells. A colitis model was induced in mice by oral administration with 2.5% DSS dissolved in drinking water. The results showed that liquiritin significantly alleviated symptoms, suppressed intestinal inflammation and restored the epithelial barrier function in the colitis mouse model. Liquiritin supplementation upregulated colonic ferritin expression, increased the storage of cellular iron, reduced the cellular iron level and further inhibited ferroptosis in epithelial cells from the colitis model. Pharmacological stimulation of ferroptosis largely blocked liquiritin-induced alleviation of colitis. Peroxiredoxin-6 (Prdx6) expression was significantly decreased in the DSS group, which was reversed by liquiritin treatment. Genetic or pharmacological silencing of Prdx6 largely reversed liquiritin-induced modulation of the ferritin/iron level and ferroptosis in epithelial cells. Molecular docking results showed that liquiritin could bind to Prdx6 through the hydrogen bond interaction with amino acid residues Thr208, Val206 and Pro203. In conclusion, liquiritin treatment largely alleviated DSS induced colitis by inhibiting ferroptosis in epithelial cells. Liquiritin negatively regulated ferroptosis in epithelial cells in colitis by activating Prdx6, increasing the expression of ferritin and subsequently reducing the cellular iron level.


Assuntos
Colite , Ferroptose , Flavanonas , Peroxirredoxina VI , Aminoácidos/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Flavanonas/farmacologia , Glucosídeos/farmacologia , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Peroxirredoxina VI/metabolismo
16.
Phytother Res ; 36(11): 4244-4262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35820659

RESUMO

Vancomycin (VCM)'s nephrotoxicity limits its application and therapeutic efficiency. The aim of this study was to determine the protective effect of rhein against VCM-induced nephrotoxicity (VIN). VIN models were established in rats and NRK-52E cells. Rhein up-regulated the expressions of renal organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2), mammal multidrug and toxin extrusion proteins 1 (Mate 1) and P-glycoprotein (P-gp) to facilitate the efflux of plasma creatinine, blood urea nitrogen (BUN), and plasma indoxyl sulfate. Rhein increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) to regulate the expression of Mrp2, P-gp, and Mate 1. The increased level of superoxide dismutase (SOD), decreased level of malondialdehyde (MDA) and reduced number of apoptosis cells were observed after treatment of rhein. Rhein decreased the number of apoptosis cells as well as increased the expression of B-cell lymphoma-2 (Bcl-2) and decreased expressions of Bcl-2-like protein 4 (Bax). ML385, as a typical inhibitor of Nrf2, reversed the protective effects of rhein in cells. Rhein oriented itself in the site of Keap1, inhibiting the Keap1-Nrf2 interaction. Rhein ameliorated VIN mainly through regulating the expressions of renal transporters and acting on Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Vancomicina , Ratos , Animais , Vancomicina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Rim , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo , Mamíferos/metabolismo
17.
Anal Chem ; 94(27): 9572-9577, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35770896

RESUMO

CYP2J2 as an endoplasmic reticulum (ER)-expressed vital cytochrome P450 isoform participates in the metabolism of endogenous polyunsaturated fatty acids. Its abnormal expression and function are closely related to the progress of cancer and cardiovascular diseases. Herein, an ER-targeting near-infrared (NIR) fluorescent probe ER-BnXPI was developed for monitoring CYP2J2 activity, which possessed a high selectivity and sensitivity toward CYP2J2 among various CYP450 isoforms and exhibited excellent subcellular localization for ER. Then, the CYP2J2 variation behavior under the ER stress model was imaged by ER-BnXPI in living cells and successfully used for the in vivo imaging in different tumors that well distinguished tumor tissues from para-cancerous tissues. All these findings fully demonstrated that ER-BnXPI could be used as a promising tool for exploring the physiological function of CYP2J2 and provided some novel approach for the diagnosis and therapy of CYP2J2-related vascular inflammation and cancer.


Assuntos
Corantes Fluorescentes , Neoplasias , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Corantes Fluorescentes/metabolismo , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
18.
Signal Transduct Target Ther ; 7(1): 71, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260565

RESUMO

NEMO/IKKß complex is a central regulator of NF-κB signaling pathway, its dissociation has been considered to be an attractive therapeutic target. Herein, using a combined strategy of molecular pharmacological phenotyping, proteomics and bioinformatics analysis, Shikonin (SHK) is identified as a potential inhibitor of the IKKß/NEMO complex. It destabilizes IKKß/NEMO complex with IC50 of 174 nM, thereby significantly impairing the proliferation of colorectal cancer cells by suppressing the NF-κB pathway in vitro and in vivo. In addition, we also elucidated the potential target sites of SHK in the NEMO/IKKß complex. Our study provides some new insights for the development of potent small-molecule PPI inhibitors.


Assuntos
Neoplasias Colorretais , Quinase I-kappa B , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais
19.
Nat Prod Res ; 36(23): 6056-6059, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35188001

RESUMO

The material basis of Cordyceps sinensis (Berk.) Sacc has not yet been well understood and natural C. sinensis resources are very rare. The present study aimed to clarify the substance basis and compare the protective effect of natural and artificially-cultivated C. sinensis against cyclophosphamide (CTX)-induced myelosuppression. Both natural and artificially-cultivated C. sinensis effectively improved CTX-induced decrease of peripheral blood counts and hemopoietic growth factors, pathological changes, and apoptosis of bone marrow. Importantly, artificially-cultivated C. sinensis showed similar capacity compared with natural C. sinensis. Uridine (1), adenosine (2), L-pyroglutamic acid (3), lysinonorleucine (4), 1,3,5-trimethoxybenzene (5), D-mannitol (6), L-pyroglutamic acid methyl ester (7), tryptophan (8), and phenylalanine (9) were isolated from bioactivity-guided fraction and identified to attenuate CTX-induced myelosuppression in mice. In conclusions, nucleosides and amino acids represented the effective chemical components in C. sinensis. Artificial cultivation can be used as an effective substitute for natural C. sinensis.


Assuntos
Cordyceps , Camundongos , Animais , Cordyceps/química , Nucleosídeos/farmacologia , Aminoácidos/farmacologia , Ácido Pirrolidonocarboxílico , Ciclofosfamida/toxicidade
20.
Braz. J. Pharm. Sci. (Online) ; 58: e21394, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420380

RESUMO

Abstract Gut bacterial β-glucuronidase (GUS) can reactivate xenobiotics that exert enterohepatic circulation- triggered gastrointestinal tract toxicity. GUS inhibitors can alleviate drug-induced enteropathy and improve treatment outcomes. We evaluated the inhibitory effect of Polygonum cuspidatum Siebold & Zucc. and its major constituents against Escherichia coli GUS (EcGUS), and characterized the inhibitory mechanism of each of the components. Trans-resveratrol 4'-O-β-D-glucopyranoside (HZ-1) and (-)-epicatechin gallate (HZ-2) isolated from P. cuspidatum were identified as the key components and potent inhibitors. These two components displayed strong to moderate inhibitory effects on EcGUS, with Ki values of 9.95 and 1.95 μM, respectively. Results from molecular docking indicated that HZ-1 and HZ-2 could interact with the key residues Asp163, Ser360, Ile 363, Glu413, Glu504, and Lys 568 of EcGUS via hydrogen bonding. Our findings demonstrate the inhibitory effect of P. cuspidatum and its two components on EcGUS, which supported the further evaluation and development of P. cuspidatum and its two active components as novel candidates for alleviating drug-induced damage in the mammalian gut.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA