Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101047, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638703

RESUMO

Polyphenols with antioxidant properties are of significant interest in medical and pharmaceutical applications. Given the diverse range of activities of polyphenols in vivo, accurate detection of these compounds plays a crucial role in nutritional surveillance and pharmaceutical development. Yet, the efficient quantitation of polyphenol contents and qualification of monomer compositions present a notable challenge when studying polyphenol bioavailability. In this study, platinum-modified nickel-iron layered double hydroxide (Pt/NiFe-LDH hybrids) were designed to mimic peroxidases for colorimetric analysis and act as enhanced matrices for laser desorption/ionization mass spectrometry (LDI MS) to quantify and qualify polyphenols. The hybrids exhibited an enzymatic activity of 33.472 U/mg for colorimetric assays, facilitating the rapid and direct quantitation of total tea polyphenols within approximately 1 min. Additionally, the heterogeneous structure and exposed hydroxyl groups on the hybrid surface contributed to photoelectric enhancement and in-situ enrichment of polyphenols in LDI MS. This study introduces an innovative approach to detect polyphenols using advanced materials, potentially inspiring the future development and applications of other photoactive nanomaterials.

2.
ACS Omega ; 7(7): 6142-6150, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224377

RESUMO

A combined steady-state and transient approach is employed to investigate the corrosion behavior of X80 pipeline steel in carbon dioxide-saturated brines. Continuous bubbling of carbon dioxide into a test vessel with 1 liter capacity is performed to simulate the flowing condition. The measurement of time-dependent open-circuit potential, polarization resistance, and electrochemical impedance spectroscopy (EIS) is conducted to interpret the evolution of dissolution processes at the corroding interface. Three distinguishing stages are observed at a temperature of 60 °C during a whole exposure of 144 h. Analyses mainly based on the consecutive mechanism show that after the first stage of the active-adsorption state, the anodic reaction is significantly retarded by the accumulation of (FeOH)ads on the iron surface, causing a sharp increase in the polarization resistance and the open-circuit potential, as well as the disappearance of the inductive loop in EIS. At the third stage, the formation of the corrosion product layer similarly reduces both the anodic and cathodic reactions, which arouses a linear increase in the polarization resistance with time and a capacitive loop in EIS but changes the open-circuit potential slightly. An increase in salinity in this study reduces the polarization resistance and enhances iron dissolution by promoting the formation and relaxation of (FeOH)ads; however, it brings little change to the developing time of the three stages obviously. At a low temperature of 20 °C, a protective product layer is not observed in carbon dioxide-saturated brine, and the dissolution of iron is mainly under activation control during the whole exposure. A notable enlarged polarization resistance and different interfacial processes are observed in an alkaline solution compared with those in acidic environments, which is deduced to be resulted from an impedance in the relaxation of (FeOH)ads by increasing pH. The observations in this study support well that the iron dissolution reaction at the initial stage exposed in carbon dioxide aqueous environments is dominant by water adsorption on the iron surface, and further investigation should be performed on the role that carbon dioxide plays in the evolution of corrosion products and the formation of a protective film on the steel surface by taking into account local water chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA