Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Front Immunol ; 15: 1382576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779661

RESUMO

Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.


Assuntos
Anticorpos Monoclonais , Receptor de Morte Celular Programada 1 , Cães , Animais , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos Monoclonais/imunologia , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Epitopos/imunologia , Doenças do Cão/imunologia , Doenças do Cão/tratamento farmacológico , Ligação Proteica , Neoplasias/imunologia , Neoplasias/veterinária , Neoplasias/tratamento farmacológico
2.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604503

RESUMO

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Proteômica , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Processamento Pós-Transcricional do RNA , Proteoma/metabolismo , Multiômica
3.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542156

RESUMO

mRNAs containing premature stop codons are responsible for various genetic diseases as well as cancers. The truncated proteins synthesized from these aberrant mRNAs are seldom detected due to the nonsense-mediated mRNA decay (NMD) pathway. Such a surveillance mechanism detects most of these aberrant mRNAs and rapidly destroys them from the pool of mRNAs. Here, we implemented chemical cross-linking mass spectrometry (CLMS) techniques to trace novel biology consisting of protein-protein interactions (PPIs) within the NMD machinery. A set of novel complex networks between UPF2 (Regulator of nonsense transcripts 2), SMG1 (Serine/threonine-protein kinase SMG1), and SMG7 from the NMD pathway were identified, among which UPF2 was found as a connection bridge between SMG1 and SMG7. The UPF2 N-terminal formed most interactions with SMG7, and a set of residues emerged from the MIF4G-I, II, and III domains docked with SMG1 or SMG7. SMG1 mediated interactions with initial residues of UPF2, whereas SMG7 formed very few interactions in this region. Modelled structures highlighted that PPIs for UPF2 and SMG1 emerged from the well-defined secondary structures, whereas SMG7 appeared from the connecting loops. Comparing the influence of cancer-derived mutations over different CLMS sites revealed that variants in the PPIs for UPF2 or SMG1 have significant structural stability effects. Our data highlights the protein-protein interface of the SMG1, UPF2, and SMG7 genes that can be used for potential therapeutic approaches. Blocking the NMD pathway could enhance the production of neoantigens or internal cancer vaccines, which could provide a platform to design potential peptide-based vaccines.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Mutação , RNA Mensageiro/genética , Estrutura Secundária de Proteína , RNA Helicases/metabolismo
4.
Biol Chem ; 405(5): 311-324, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38379409

RESUMO

Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.


Assuntos
Antígenos de Diferenciação , Conformação Proteica , Humanos , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo
5.
Brain Tumor Pathol ; 41(1): 4-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097874

RESUMO

Deletion of CDKN2A occurs in 50% of glioblastomas (GBM), and IFNA locus deletion in 25%. These genes reside closely on chromosome 9. We investigated whether CDKN2A and IFNA were co-deleted within the same heterogeneous tumour and their prognostic implications. We assessed CDKN2A and IFNA14 deletions in 45 glioma samples using an in-house three-colour FISH probe. We examined the correlation between p16INK4a protein expression (via IHC) and CDKN2A deletion along with the impact of these genomic events on patient survival. FISH analyses demonstrated that grades II and III had either wildtype (wt) or amplified CDKN2A/IFNA14, whilst 44% of GBMs harboured homozygous deletions of both genes. Cores with CDKN2A homozygous deletion (n = 11) were negative for p16INK4a. Twenty p16INK4a positive samples lacked CDKN2A deletion with some of cells showing negative p16INK4a. There was heterogeneity in IFNA14/CDKN2A ploidy within each GBM. Survival analyses of primary GBMs suggested a positive association between increased p16INK4a and longer survival; this persisted when considering CDKN2A/IFNA14 status. Furthermore, wt (intact) CDKN2A/IFNA14 were found to be associated with longer survival in recurrent GBMs. Our data suggest that co-deletion of CDKN2A/IFNA14 in GBM negatively correlates with survival and CDKN2A-wt status correlated with longer survival, and with second surgery, itself a marker for improved patient outcomes.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Glioblastoma , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Deleção de Genes , Glioblastoma/patologia , Homozigoto , Deleção de Sequência
6.
iScience ; 26(11): 108031, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876814

RESUMO

The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.

7.
Cancer Immunol Res ; 11(6): 747-762, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36961404

RESUMO

Tumor antigens can emerge through multiple mechanisms, including translation of noncoding genomic regions. This noncanonical category of tumor antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry (MS) to enable the discovery of noncanonical MHC class I-associated peptides (ncMAP) from noncoding regions. Considering that the emergence of tumor antigens can also involve posttranslational modifications (PTM), we included an open search component in our pipeline. Leveraging the wealth of MS-based immunopeptidomics, we analyzed data from 26 MHC class I immunopeptidomic studies across 11 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant PTMs, using spectral matching and controlled their FDR to 1%. The noncanonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive therapeutic targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targets for T-cell therapies or vaccine development.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Humanos , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias/genética , Genômica , Antígenos de Neoplasias , Peptídeos
8.
Front Immunol ; 13: 1042368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466909

RESUMO

Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.


Assuntos
Interferons , Vírus , Humanos , Antivirais , Carcinogênese , Proteínas de Membrana/genética
9.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551672

RESUMO

Canine apocrine gland anal sac adenocarcinoma (AGASACA) is an aggressive canine tumor originating from the anal sac glands. Surgical resection, with or without adjuvant chemotherapy, represents the standard of care for this tumor, but the outcome is generally poor, particularly for tumors diagnosed at an advanced stage. For this reason, novel treatment options are warranted, and a few recent reports have suggested the activation of the immune checkpoint axis in canine AGASACA. In our study, we developed canine-specific monoclonal antibodies targeting PD-1 and PD-L1. A total of 41 AGASACAs with complete clinical and follow-up information were then analyzed by immunohistochemistry for the expression of the two checkpoint molecules (PD-L1 and PD-1) and the presence of tumor-infiltrating lymphocytes (CD3 and CD20), which were evaluated within the tumor bulk (intratumor) and in the surrounding stroma (peritumor). Seventeen AGASACAs (42%) expressed PD-L1 in a range between 5% and 95%. The intratumor lymphocytes were predominantly CD3+ T-cells and were positively correlated with the number of PD-1+ intratumor lymphocytes (ρ = 0.36; p = 0.02). The peritumor lymphocytes were a mixture of CD3+ and CD20+ cells with variable PD-1 expression (range 0-50%). PD-L1 expression negatively affected survival only in the subgroup of dogs treated with surgery alone (n = 14; 576 vs. 235 days). The presence of a heterogeneous lymphocytic infiltrate and the expression of PD-1 and PD-L1 molecules support the relevance of the immune microenvironment in canine AGASACAs and the potential value of immune checkpoints as promising therapeutic targets.

10.
Sci Rep ; 12(1): 19422, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371414

RESUMO

The interferon signalling system elicits a robust cytokine response against a wide range of environmental pathogenic and internal pathological signals, leading to induction of a subset of interferon-induced proteins. We applied DSS (disuccinimidyl suberate) mediated cross-linking mass spectrometry (CLMS) to capture novel protein-protein interactions within the realm of interferon induced proteins. In addition to the expected interferon-induced proteins, we identified novel inter- and intra-molecular cross-linked adducts for the canonical interferon induced proteins, such as MX1, USP18, OAS3, and STAT1. We focused on orthogonal validation of a cohort of novel interferon-induced protein networks formed by the HLA-A protein (H2BFS-HLA-A-HMGA1) using co-immunoprecipitation assay, and further investigated them by molecular dynamics simulation. Conformational dynamics of the simulated protein complexes revealed several interaction sites that mirrored the interactions identified in the CLMS findings. Together, we showcase a proof-of-principle CLMS study to identify novel interferon-induced signaling complexes and anticipate broader use of CLMS to identify novel protein interaction dynamics within the tumour microenvironment.


Assuntos
Interferons , Proteínas , Humanos , Reagentes de Ligações Cruzadas/química , Proteínas/química , Espectrometria de Massas/métodos , Antígenos HLA-A , Antígenos HLA , Ubiquitina Tiolesterase
11.
Biomolecules ; 12(8)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008984

RESUMO

The IFITM restriction factors play a role in cancer cell progression through undefined mechanisms. We investigate new protein-protein interactions for IFITM1/3 in the context of cancer that would shed some light on how IFITM1/3 attenuate the expression of targeted proteins such as HLA-B. SBP-tagged IFITM1 protein was used to identify an association of IFITM1 protein with the SRSF1 splicing factor and transporter of mRNA to the ribosome. Using in situ proximity ligation assays, we confirmed a predominant cytosolic protein-protein association for SRSF1 and IFITM1/3. Accordingly, IFITM1/3 interacted with HLA-B mRNA in response to IFNγ stimulation using RNA-protein proximity ligation assays. In addition, RT-qPCR assays in IFITM1/IFITM3 null cells and wt-SiHa cells indicated that HLA-B gene expression at the mRNA level does not account for lowered HLA-B protein synthesis in response to IFNγ. Complementary, shotgun RNA sequencing did not show major transcript differences between IFITM1/IFITM3 null cells and wt-SiHa cells. Furthermore, ribosome profiling using sucrose gradient sedimentation identified a reduction in 80S ribosomal fraction an IFITM1/IFITM3 null cells compared to wild type. It was partially reverted by IFITM1/3 complementation. Our data link IFITM1/3 proteins to HLA-B mRNA and SRSF1 and, all together, our results begin to elucidate how IFITM1/3 catalyze the synthesis of target proteins. IFITMs are widely studied for their role in inhibiting viruses, and multiple studies have associated IFITMs with cancer progression. Our study has identified new proteins associated with IFITMs which support their role in mediating protein expression; a pivotal function that is highly relevant for viral infection and cancer progression. Our results suggest that IFITM1/3 affect the expression of targeted proteins; among them, we identified HLA-B. Changes in HLA-B expression could impact the presentation and recognition of oncogenic antigens on the cell surface by cytotoxic T cells and, ultimately, limit tumor cell eradication. In addition, the role of IFITMs in mediating protein abundance is relevant, as it has the potential for regulating the expression of viral and oncogenic proteins.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos HLA-B , Neoplasias do Colo do Útero , Feminino , Antígenos HLA-B/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Processamento de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Neoplasias do Colo do Útero/genética
12.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792674

RESUMO

The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53-MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53-MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto's Paradox.


Assuntos
Elefantes , Neoplasias , Animais , Elefantes/genética , Elefantes/metabolismo , Genes p53 , Neoplasias/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
14.
Bioorg Med Chem ; 70: 116923, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841829

RESUMO

The ATP binding sites of many enzymes are structurally related, which complicates their development as therapeutic targets. In this work, we explore a diverse set of ATPases and compare their ATP binding pockets using different strategies, including direct and indirect structural methods, in search of pockets attractive for drug discovery. We pursue different direct and indirect structural strategies, as well as ligandability assessments to help guide target selection. The analyses indicate human RAD51, an enzyme crucial in homologous recombination, as a promising, tractable target. Inhibition of RAD51 has shown promise in the treatment of certain cancers but more potent inhibitors are needed. Thus, we design compounds computationally against the ATP binding pocket of RAD51 with consideration of multiple criteria, including predicted specificity, drug-likeness, and toxicity. The molecules designed are evaluated experimentally using molecular and cell-based assays. Our results provide two novel hit compounds against RAD51 and illustrate a computational pipeline to design new inhibitors against ATPases.


Assuntos
Descoberta de Drogas , Recombinação Homóloga , Adenosina Trifosfatases , Trifosfato de Adenosina/química , Sítios de Ligação , Humanos , Ligação Proteica
15.
Biomed Pharmacother ; 151: 113190, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643065

RESUMO

The structural spike (S) protein from the SARS-CoV-2 ß-coronavirus is shown to make different pre- and post-fusion conformations within its homotrimer unit. To support the ongoing novel vaccine design and development strategies, we report the structure-based design approach to develop self-derived S peptides. A dataset of crucial regions from the S protein were transformed into linear motifs that could act as the blockers or stabilizers for the S protein homotrimer unit. Among these distinct S peptides, the pep02 (537-QQFGRDIAD-545) and pep07 (821-RDLICAQKFNGLTVLPPLLTDE-842) were found making stable folded binding with the S protein (550-750 and 950-1050 regions). Upon inserting SARS-CoV-2 S variants in the peptide destabilized the complexed S protein structure, resulting an allosteric effect in different functional regions of the protein. Particularly, the molecular dynamics revealed that A544D mutation in the pep02 peptide induced instability for the complexed S protein, whereas the N943K variant from pep09 exhibited an opposite behavior. An increased protein-peptide binding affinity and the stable structural folding were observed in mutated systems, compared to that of the wild type systems. The presence of mutation has induced an "up" active conformation of the spike (RBD) domain, responsible for interacting the host cell receptor. Among the lower affinity peptide datasets (e.g., pep01), the S1 and S2 subunit in the protein formed an "open" conformation, whereas with higher affinity peptides (e.g., pep07) these domains gained a "closed" conformation. These findings propose that our designed self-derived S peptides could replace a single S protein monomer, blocking the homotrimer formation or inducing stability.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2
16.
ACS Chem Biol ; 17(7): 1876-1889, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696676

RESUMO

Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of "druggable" driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma. In this current study, we report for the first time the dose-response validation studies for the 72 screening hits from the target-annotated LOPAC and Prestwick FDA-approved compound libraries and the full list of 51 validated esophageal adenocarcinoma-selective small molecules (71% validation rate). We then focus on the most potent and selective hit molecules, elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate. Using a multipronged, multitechnology approach, we uncover a unified mechanism of action and a vulnerability in esophageal adenocarcinoma toward copper-dependent cell death that could be targeted in the future.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Adenocarcinoma/tratamento farmacológico , Cobre/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Humanos , Ionóforos/farmacologia , Fenótipo
17.
BMC Med Genomics ; 15(1): 128, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668402

RESUMO

BACKGROUND: Gorham-Stout disease is a rare condition characterized by vascular proliferation and the massive destruction of bone tissue. With less than 400 cases in the literature of Gorham-Stout syndrome, we performed a unique study combining whole-genome sequencing and RNA-Seq to probe the genomic features and differentially expressed pathways of a presented case, revealing new possible drivers and biomarkers of the disease. CASE PRESENTATION: We present a case report of a white 45-year-old female patient with marked bone loss of the left humerus associated with vascular proliferation, diagnosed with Gorham-Stout disease. The analysis of whole-genome sequencing showed a dominance of large structural DNA rearrangements. Particularly, rearrangements in chromosomes seven, twelve, and twenty could contribute to the development of the disease, especially a gene fusion involving ATG101 that could affect macroautophagy. The study of RNA-sequencing data from the patient uncovered the PI3K/AKT/mTOR pathway as the most affected signaling cascade in the Gorham-Stout lesional tissue. Furthermore, M2 macrophage infiltration was detected using immunohistochemical staining and confirmed by deconvolution of the RNA-seq expression data. CONCLUSIONS: The way that DNA and RNA aberrations lead to Gorham-Stout disease is poorly understood due to the limited number of studies focusing on this rare disease. Our study provides the first glimpse into this facet of the disease, exposing new possible therapeutic targets and facilitating the clinicopathological diagnosis of Gorham-Stout disease.


Assuntos
Osteólise Essencial , Humanos , Pessoa de Meia-Idade , Osteólise Essencial/complicações , Osteólise Essencial/diagnóstico , Osteólise Essencial/genética , Fosfatidilinositol 3-Quinases , RNA
18.
Anal Chim Acta ; 1204: 339695, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35397901

RESUMO

Developments in quantitative proteomics and data-independent acquisition (DIA) methodology is enabling quantification of proteins in biological samples. Currently, there are a few reports on DIA mass spectrometry (MS) approaches for proteome analysis of formalin-fixed paraffin-embedded (FFPE) tissues. Therefore, to facilitate detection and quantification of immune- and glioblastoma (GBM)-relevant proteins from FFPE patient materials, we established a simple and precise DIA-MS workflow. We first evaluated different lysis buffers for their efficiency in protein extractions from FFPE GBM tissues. Our results showed that more than 1700 proteins were detected and over 1400 proteins were quantified from GBM FFPE tissue microdissections. GBM-relevant proteins (e.g., GFAP, FN1, VIM, and MBP) were quantified with high precision (median coefficient of variation <12%). In addition, immune-related proteins (e.g., ILF2, MIF, and CD38) were consistently detected and quantified. The strategy holds great potential for routinizing protein quantification in FFPE tissue samples.


Assuntos
Glioblastoma , Proteoma , Formaldeído/química , Humanos , Inclusão em Parafina/métodos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos/métodos
19.
Nat Commun ; 13(1): 856, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165293

RESUMO

Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs' potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors.


Assuntos
Comunicação Celular/imunologia , Membrana Celular/metabolismo , Tolerância Imunológica/imunologia , Células-Tronco Mesenquimais/imunologia , Mitocôndrias/metabolismo , Linfócitos T Reguladores/imunologia , Proliferação de Células , Células Cultivadas , Feminino , Antígenos HLA-C/genética , Cadeias HLA-DRB1/genética , Humanos , Ativação Linfocitária/imunologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA