Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(40): 21766-21784, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768555

RESUMO

We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(µ-PH)] (3), and [{Th(TrenTIPS)}2(µ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (µ-P)3- > (═PH)2- > (µ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.

2.
Angew Chem Int Ed Engl ; 61(51): e202212164, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36240785

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.


Assuntos
Alcadienos , Nióbio , Nióbio/química , Alumínio , Catálise
3.
Angew Chem Weinheim Bergstr Ger ; 134(51): e202212164, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38505214

RESUMO

The production of conjugated C4-C5 dienes from biomass can enable the sustainable synthesis of many important polymers and liquid fuels. Here, we report the first example of bimetallic (Nb, Al)-atomically doped mesoporous silica, denoted as AlNb-MCM-41, which affords quantitative conversion of 2-methyltetrahydrofuran (2-MTHF) to pentadienes with a high selectivity of 91 %. The incorporation of AlIII and NbV sites into the framework of AlNb-MCM-41 has effectively tuned the nature and distribution of Lewis and Brønsted acid sites within the structure. Operando X-ray absorption, diffuse reflectance infrared and solid-state NMR spectroscopy collectively reveal the molecular mechanism of the conversion of adsorbed 2-MTHF over AlNb-MCM-41. Specifically, the atomically-dispersed NbV sites play an important role in binding 2-MTHF to drive the conversion. Overall, this study highlights the potential of hetero-atomic mesoporous solids for the manufacture of renewable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA