Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 91: 129384, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339720

RESUMO

DNA G-quadruplex (G4) structures are enriched at human genome loci critical for cancer development, such as in oncogene promoters, telomeres, and rDNA. Medicinal chemistry approaches to developing drugs that target G4 structures date back to over 20 years ago. Small-molecule drugs were designed to target and stabilize G4 structures, thereby blocking replication and transcription, resulting in cancer cell death. CX-3543 (Quarfloxin) was the first G4-targeting drug to enter clinical trials in 2005; however, because of the lack of efficacy, it was withdrawn from Phase 2 clinical trials. Efficacy problems also occurred in the clinical trial of patients with advanced hematologic malignancies using CX-5461 (Pidnarulex), another G4-stabilizing drug. Only after the discovery of synthetic lethal (SL) interactions between Pidnarulex and the BRCA1/2-mediated homologous recombination (HR) pathway in 2017, promising clinical efficacy was achieved. In this case, Pidnarulex was used in a clinical trial to treat solid tumors deficient in BRCA2 and PALB2. The history of the development of Pidnarulex highlights the importance of SL in identifying cancer patients responsive to G4-targeting drugs. In order to identify additional cancer patients responsive to Pidnarulex, several genetic interaction screens have been performed with Pidnarulex and other G4-targeting drugs using human cancer cell lines or C. elegans. Screening results confirmed the synthetic lethal interaction between G4 stabilizers and HR genes and also uncovered other novel genetic interactions, including genes in other DNA damage repair pathways and genes in transcription, epigenetic, and RNA processing deficiencies. In addition to patient identification, synthetic lethality is also important for the design of drug combination therapy for G4-targeting drugs in order to achieve better clinical outcomes.


Assuntos
Quadruplex G , Neoplasias , Animais , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Caenorhabditis elegans , Neoplasias/tratamento farmacológico
2.
Bioorg Med Chem Lett ; 77: 129016, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195286

RESUMO

CX-3543 (Quarfloxin) and CX-5461 (Pidnarulex) were originally derived from a group of fluoroquinolones that were shown to have dual topoisomerase II (Top2) and G-quadruplex (G4) interactions, and QQ58 was the starting structure for their design. Quarfloxin was initially shown to inhibit c-MYC mRNA expression. Studies at Cylene Pharmaceuticals showed that the primary mechanism of action of Quarfloxin is due to displacement of nucleolin from quadruplexes on the non-template strand of rDNA, causing rapid redistribution of nucleolin from nucleoli, inhibition of rRNA synthesis, and apoptotic death in cancer cells. At Cylene a follow-up compound to Quarfloxin, named Pidnarulex (CX-5461), was optimized for targeting RNA Pol 1. Significantly, in more recent work published in Proc Natl Acad Sci USA and Cell in 2020 and in eLIFE and Nat Comm in 2021, it has been shown that the real molecular target for Pidnarulex is Top2 at transcribed regions containing G4s, rather than RNA Pol 1. These results support the original design strategy published in Mol Cancer Ther in 2001, which was to rationally design a G4-targeting drug (QQ58) starting from a fluoroquinolone duplex-targeting Top2 poison (A-62176) that had good drug-like properties. A very important breakthrough was realized when homologous recombination (HR) was found to be important in the repair of DNA damage caused by G4-interactive compounds, suggesting that a synthetic lethal approach might be useful in identifying cancer patients sensitive to these agents. Through use of an unbiased screen, this mechanistic insight was shown to directly apply to Cylene compounds, which were found to induce DNA damage and to be dependent on BRCA1/2-mediated HR and the DNA-PK-mediated nonhomologous end-joining (NHEJ) pathway for damage repair. To evaluate how this mechanistic insight involving a synthetic lethal approach might be applied clinically, a recent Canadian Phase I clinical trial with Pidnarulex in breast and ovarian cancer patients with known BRCA1/2 germline mutations was carried out. Because of the G4 stabilizer function of Pidnarulex, patient populations that responded well to this compound were identified: they are cancer patients with BRCA1/2 deficiency or deficiency in other DNA damage response pathways. Clinically observed resistance to Pidnarulex resulted from reversion to WT BRCA2 and PALB2 ("partner and localizer of BRCA2," because it partners with another gene, called BRCA2), thus providing strong evidence for the underlying synthetic lethal hypothesis proposed for G4-targeting compounds that cause DNA damage.


Assuntos
Reparo do DNA , Fluoroquinolonas , Humanos , Canadá , DNA Topoisomerases Tipo II/metabolismo , Inibidores Enzimáticos , RNA
3.
Biochimie ; 190: 124-131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34329720

RESUMO

Paraspeckles are RNA-protein structures within the nucleus of mammalian cells, capable of orchestrating various biochemical processes. An overexpression of the architectural component of paraspeckles, a long non-coding RNA called NEAT1 (Nuclear Enriched Abundant Transcript 1), has been linked to a variety of cancers and is often associated with poor patient prognosis. Thus, there is an accumulating interest in the role of paraspeckles in carcinogenesis, however there is a limited understanding of how NEAT1 expression is regulated. Here, we demonstrate that both nuclear G-quadruplex (G4) and paraspeckle formation are significantly increased in a human breast cancer cell line compared to non-tumorigenic breast cells. Moreover, we identified and characterized G4-forming sequences within the NEAT1 promoter and demonstrate stabilization of G4 DNA with a G4-stabilizing small molecule results in a significant alteration in both paraspeckle formation and NEAT1 expression. This G4-mediated alteration of NEAT1 at both the transcriptional and post-transcriptional levels was evident in U2OS osteosarcoma cells, MCF-7 breast adenocarcinoma and MDA-MB-231 triple negative breast cancer cells.


Assuntos
Quadruplex G , Neoplasias/genética , Neoplasias/metabolismo , Paraspeckles/genética , Paraspeckles/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Humanos , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
J Am Chem Soc ; 142(49): 20600-20604, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33253551

RESUMO

Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.


Assuntos
Quadruplex G , Sequência de Bases , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , Elipticinas/farmacologia , Quadruplex G/efeitos dos fármacos , Loci Gênicos , Humanos , Ligantes , Células MCF-7
5.
Cell Rep ; 32(12): 108181, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966797

RESUMO

Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tumor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates specific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth. We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression. Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination.


Assuntos
Heme/metabolismo , Hemopexina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , DNA/genética , Progressão da Doença , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Fenótipo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Resultado do Tratamento , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
6.
Oncotarget ; 11(19): 1758-1776, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477465

RESUMO

The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.

7.
BMC Cancer ; 19(1): 1251, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881855

RESUMO

BACKGROUND: Acute Myeloid Leukemia (AML) is a malignancy of myeloid precursor cells that arise from genomic alterations in the expression of key growth regulatory genes causing cells to assume an undifferentiated state and continue to proliferate. Recent efforts have focused on developing therapies that target specific protein products of aberrantly expressed genes. However, many of the identified proteins are difficult to target and thought to be "undrugable" because of structural challenges, protein overexpression, or mutations that confer resistance to therapy. A novel technology that circumvents some of these issues is the use of small molecules that stabilize secondary DNA structures present in the promoters of many potential oncogenes and modulate their transcription. METHODS: This study characterizes the in vitro activity of the G-quadruplex-stabilizing small molecule GQC-05 in AML cells. The effect of GQC-05 on three AML cell lines was analyzed using viability and apoptosis assays. GQC-05 has been shown to down-regulate MYC through G-quadruplex stabilization in Burkitt's lymphoma cell lines. MYC expression was evaluated through qPCR and immunoblotting in the three AML cell lines following the treatment of GQC-05. In order to identify other therapeutic agents that potentiate the activity of GQC-05, combination drug screening was performed. The drug combinations were validated using in vitro cytotoxicity assays and compared to other commonly used chemotherapeutic agents. RESULTS: GQC-05 treatment of KG-1a, CMK and TF-1 cells decreased cell viability and resulted in increased DNA damage and apoptosis. Additionally, treatment of KG-1a, CMK and TF-1 with GQC-05 resulted in decreased expression of MYC mRNA and protein, with a more pronounced effect in KG-1a cells. Combination drug screening identified the Bcl-2/Bcl-XL inhibitor Navitoclax as a compound that potentiated GQC-05 activity. Co-treatment with GQC-05 and Navitoclax showed a synergistic decrease in cell viability of AML cells as determined by Chou-Talalay analysis, and induced more DNA damage, apoptosis, and rapid cytotoxicity. The cytotoxicity induced by GQC-05 and Navitoclax was more potent than that of Navitoclax combined with either cytarabine or doxorubicin. CONCLUSION: These results suggest that the G-quadruplex stabilizing small molecule GQC-05 induces down regulated MYC expression and DNA damage in AML cells. Treatment with both GQC-05 with a Bcl-2/Bcl-XL inhibitor Navitoclax results in increased cytotoxic activity, which is more pronounced than Navitoclax or GQC-05 alone, and more significant than Navitoclax in combination with cytarabine and doxorubicin that are currently being used clinically.


Assuntos
Compostos de Anilina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Elipticinas/farmacologia , Quadruplex G/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Elipticinas/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Resultado do Tratamento
8.
Cell Chem Biol ; 26(8): 1110-1121.e4, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31155510

RESUMO

Increased telomerase activity is associated with malignancy and poor prognosis in human cancer, but the development of targeted agents has not yet provided clinical benefit. Here we report that, instead of targeting the telomerase enzyme directly, small molecules that bind to the G-hairpin of the hTERT G-quadruplex-forming sequence kill selectively malignant cells without altering the function of normal cells. RG260 targets the hTERT G-quadruplex stem-loop folding but not tetrad DNAs, leading to downregulation of hTERT expression. To improve physicochemical and pharmacokinetic properties, we derived a small-molecule analog, RG1603, from the parent compound. RG1603 induces mitochondrial defects including PGC1α and NRF2 inhibition and increases oxidative stress, followed by DNA damage and apoptosis. RG1603 injected as a single agent has tolerable toxicity while achieving strong anticancer efficacy in a tumor xenograft mouse model. These results demonstrate a unique approach to inhibiting the hTERT that functions by impairing mitochondrial activity, inducing cell death.


Assuntos
Quadruplex G/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Telomerase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos SCID , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Telomerase/metabolismo
9.
Nat Nanotechnol ; 13(12): 1148-1153, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297819

RESUMO

Gold nanorods are one of the most widely explored inorganic materials in nanomedicine for diagnostics, therapeutics and sensing1. It has been shown that gold nanorods are not cytotoxic and localize within cytoplasmic vesicles following endocytosis, with no nuclear localization2,3, but other studies have reported alterations in gene expression profiles in cells following exposure to gold nanorods, via unknown mechanisms4. In this work we describe a pathway that can contribute to this phenomenon. By mapping the intracellular chemical speciation process of gold nanorods, we show that the commonly used Au-thiol conjugation, which is important for maintaining the noble (inert) properties of gold nanostructures, is altered following endocytosis, resulting in the formation of Au(I)-thiolates that localize in the nucleus5. Furthermore, we show that nuclear localization of the gold species perturbs the dynamic microenvironment within the nucleus and triggers alteration of gene expression in human cells. We demonstrate this using quantitative visualization of ubiquitous DNA G-quadruplex structures, which are sensitive to ionic imbalances, as an indicator of the formation of structural alterations in genomic DNA.


Assuntos
Núcleo Celular/genética , DNA/química , Quadruplex G , Ouro/metabolismo , Nanotubos , Compostos de Sulfidrila/metabolismo , Núcleo Celular/metabolismo , DNA/genética , Endocitose , Regulação da Expressão Gênica , Ouro/análise , Células HEK293 , Humanos , Células MCF-7 , Nanotubos/análise , Nanotubos/ultraestrutura , Compostos de Sulfidrila/análise
10.
Chem Commun (Camb) ; 54(68): 9442-9445, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30079419

RESUMO

This communication reports on a possible distinct role of HMGB1 protein. Biophysical studies revealed that HMGB1 binds and stabilizes the G-quadruplex of the KRAS promoter element that is responsible for most of the transcriptional activity. Biological data showed that inhibition of HMGB1 increases KRAS expression. These results suggest that HMGB1 could play a role in the gene transcriptional regulation via the functional recognition of the G-quadruplex.


Assuntos
Quadruplex G , Proteína HMGB1/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Fluoresceína/química , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Proteína HMGB1/genética , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/genética
11.
J Am Chem Soc ; 139(25): 8522-8536, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28570076

RESUMO

Activating KRAS mutations frequently occur in pancreatic, colorectal, and lung adenocarcinomas. While many attempts have been made to target oncogenic KRAS, no clinically useful therapies currently exist. Most efforts to target KRAS have focused on inhibiting the mutant protein; a less explored approach involves targeting KRAS at the transcriptional level. The promoter element of the KRAS gene contains a GC-rich nuclease hypersensitive site with three potential DNA secondary structure-forming regions. These are referred to as the Near-, Mid-, and Far-regions, on the basis of their proximity to the transcription start site. As a result of transcription-induced negative superhelicity, these regions can open up to form unique DNA secondary structures: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. While the G-quadruplexes have been well characterized, the i-motifs have not been investigated as thoroughly. Here we show that the i-motif that forms in the C-rich Mid-region is the most stable and exists in a dynamic equilibrium with a hybrid i-motif/hairpin species and an unfolded hairpin species. The transcription factor heterogeneous nuclear ribonucleoprotein K (hnRNP K) was found to bind selectively to the i-motif species and to positively modulate KRAS transcription. Additionally, we identified a benzophenanthridine alkaloid that dissipates the hairpin species and destabilizes the interaction of hnRNP K with the Mid-region i-motif. This same compound stabilizes the three existing KRAS G-quadruplexes. The combined effect of the compound on the Mid-region i-motif and the G-quadruplexes leads to downregulation of KRAS gene expression. This dual i-motif/G-quadruplex-interactive compound presents a new mechanism to modulate gene expression.


Assuntos
Quadruplex G , Oligonucleotídeos/farmacologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sequência de Aminoácidos , Química Farmacêutica , Dicroísmo Circular , Inativação Gênica/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Mutação , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas p21(ras)/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transcrição Gênica/efeitos dos fármacos
12.
J Med Chem ; 60(15): 6587-6597, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28605593

RESUMO

Secondary DNA structures are uniquely poised as therapeutic targets due to their molecular switch function in turning gene expression on or off and scaffold-like properties for protein and small molecule interaction. Strategies to alter gene transcription through these structures thus far involve targeting single DNA conformations. Here we investigate the feasibility of simultaneously targeting different secondary DNA structures to modulate two key oncogenes, cellular-myelocytomatosis (MYC) and B-cell lymphoma gene-2 (BCL2), in diffuse large B-cell lymphoma (DLBCL). Cotreatment with previously identified ellipticine and pregnanol derivatives that recognize the MYC G-quadruplex and BCL2 i-motif promoter DNA structures lowered mRNA levels and subsequently enhanced sensitivity to a standard chemotherapy drug, cyclophosphamide, in DLBCL cell lines. In vivo repression of MYC and BCL2 in combination with cyclophosphamide also significantly slowed tumor growth in DLBCL xenograft mice. Our findings demonstrate concurrent targeting of different DNA secondary structures offers an effective, precise, medicine-based approach to directly impede transcription and overcome aberrant pathways in aggressive malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Quadruplex G , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Apoptose/efeitos dos fármacos , Benzoxazinas/uso terapêutico , Caspase 3/metabolismo , Linhagem Celular , Ciclofosfamida/uso terapêutico , Sistemas de Liberação de Medicamentos , Elipticinas/uso terapêutico , Técnicas de Silenciamento de Genes , Humanos , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Pregnanos/uso terapêutico , RNA Mensageiro/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Am Chem Soc ; 139(22): 7456-7475, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28471683

RESUMO

The platelet-derived growth factor receptor ß (PDGFR-ß) signaling pathway is a validated and important target for the treatment of certain malignant and nonmalignant pathologies. We previously identified a G-quadruplex-forming nuclease hypersensitive element (NHE) in the human PDGFR-ß promoter that putatively forms four overlapping G-quadruplexes. Therefore, we further investigated the structures and biological roles of the G-quadruplexes and i-motifs in the PDGFR-ß NHE with the ultimate goal of demonstrating an alternate and effective strategy for molecularly targeting the PDGFR-ß pathway. Significantly, we show that the primary G-quadruplex receptor for repression of PDGFR-ß is the 3'-end G-quadruplex, which has a GGA sequence at the 3'-end. Mutation studies using luciferase reporter plasmids highlight a novel set of G-quadruplex point mutations, some of which seem to provide conflicting results on effects on gene expression, prompting further investigation into the effect of these mutations on the i-motif-forming strand. Herein we characterize the formation of an equilibrium between at least two different i-motifs from the cytosine-rich (C-rich) sequence of the PDGFR-ß NHE. The apparently conflicting mutation results can be rationalized if we take into account the single base point mutation made in a critical cytosine run in the PDGFR-ß NHE that dramatically affects the equilibrium of i-motifs formed from this sequence. We identified a group of ellipticines that targets the G-quadruplexes in the PDGFR-ß promoter, and from this series of compounds, we selected the ellipticine analog GSA1129, which selectively targets the 3'-end G-quadruplex, to shift the dynamic equilibrium in the full-length sequence to favor this structure. We also identified a benzothiophene-2-carboxamide (NSC309874) as a PDGFR-ß i-motif-interactive compound. In vitro, GSA1129 and NSC309874 downregulate PDGFR-ß promoter activity and transcript in the neuroblastoma cell line SK-N-SH at subcytotoxic cell concentrations. GSA1129 also inhibits PDGFR-ß-driven cell proliferation and migration. With an established preclinical murine model of acute lung injury, we demonstrate that GSA1129 attenuates endotoxin-mediated acute lung inflammation. Our studies underscore the importance of considering the effects of point mutations on structure formation from the G- and C-rich sequences and provide further evidence for the involvement of both strands and associated structures in the control of gene expression.


Assuntos
Motivos de Aminoácidos , Desoxirribonucleases/química , Sistemas de Liberação de Medicamentos , Quadruplex G , Receptor beta de Fator de Crescimento Derivado de Plaquetas/química , Sequência de Bases , Regulação para Baixo , Quadruplex G/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Mutação , Regiões Promotoras Genéticas
14.
Genome Res ; 27(4): 524-532, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373299

RESUMO

Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.


Assuntos
Aberrações Cromossômicas , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/genética , Genes da Neurofibromatose 1 , Humanos , Masculino , Melanoma/patologia , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Telomerase/metabolismo , Transcriptoma , Quinases Ativadas por p21/genética
15.
J Am Chem Soc ; 138(41): 13673-13692, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27643954

RESUMO

Activation of human telomerase reverse transcriptase (hTERT) is necessary for limitless replication in tumorigenesis. Whereas hTERT is transcriptionally silenced in normal cells, most tumor cells reactivate hTERT expression by alleviating transcriptional repression through diverse genetic and epigenetic mechanisms. Transcription-activating hTERT promoter mutations have been found to occur at high frequencies in multiple cancer types. These mutations have been shown to form new transcription factor binding sites that drive hTERT expression, but this model cannot fully account for differences in wild-type (WT) and mutant promoter activation and has not yet enabled a selective therapeutic strategy. Here, we demonstrate a novel mechanism by which promoter mutations activate hTERT transcription, which also sheds light on a unique therapeutic opportunity. Promoter mutations occur in a core promoter region that forms tertiary structures consisting of a pair of G-quadruplexes involved in transcriptional silencing. We show that promoter mutations exert a detrimental effect on the folding of one of these G-quadruplexes, resulting in a nonfunctional silencer element that alleviates transcriptional repression. We have also identified a small drug-like pharmacological chaperone (pharmacoperone) molecule, GTC365, that acts at an early step in the G-quadruplex folding pathway to redirect mutant promoter G-quadruplex misfolding, partially reinstate the correct folding pathway, and reduce hTERT activity through transcriptional repression. This transcription-mediated repression produces cancer cell death through multiple routes including both induction of apoptosis through inhibition of hTERT's role in regulating apoptosis-related proteins and induction of senescence by decreasing telomerase activity and telomere length. We demonstrate the selective therapeutic potential of this strategy in melanoma cells that overexpress hTERT.

16.
J Am Chem Soc ; 138(42): 14138-14151, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27669098

RESUMO

MYC is overexpressed in many different cancer types and is an intensively studied oncogene because of its contributions to tumorigenesis. The regulation of MYC is complex, and the NHE III1 and FUSE elements rely upon noncanonical DNA structures and transcriptionally induced negative superhelicity. In the NHE III1 only the G-quadruplex has been extensively studied, whereas the role of the i-motif, formed on the opposite C-rich strand, is much less understood. We demonstrate here that the i-motif is formed within the 4CT element and is recognized by hnRNP K, which leads to a low level of transcription activation. For maximal hnRNP K transcription activation, two additional cytosine runs, located seven bases downstream of the i-motif-forming region, are also required. To access these additional runs of cytosine, increased negative superhelicity is necessary, which leads to a thermodynamically stable complex between hnRNP K and the unfolded i-motif. We also demonstrate mutual exclusivity between the MYC G-quadruplex and i-motif, providing a rationale for a molecular switch mechanism driven by SP1-induced negative superhelicity, where relative hnRNP K and nucleolin expression shifts the equilibrium to the on or off state.

17.
J Am Chem Soc ; 138(34): 10950-62, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27483029

RESUMO

The recently discovered role of the BCL2 (B-cell lymphoma 2 gene) promoter i-motif DNA in modulation of gene expression via interaction with the ribonucleoprotein hnRNP L-like (hnRNP LL) has prompted a more detailed study of the nature of this protein-DNA interaction. The RNA recognition motifs (RRMs) of hnRNP LL were expressed individually, and both RRM1 and RRM2 were found to bind efficiently to the BCL2 i-motif DNA, as well as being critical for transcriptional activation, whereas RRM3-4 bound only weakly to this DNA. Binding was followed by unfolding of the DNA as monitored by changes in the CD spectrum. Mutational analysis of the i-motif DNA revealed that binding involved primarily the lateral loops of the i-motif. The kinetics of binding of the DNA with RRM1 was explored by recording CD spectra at predetermined times following admixture of the protein and DNA. The change in molar ellipticity was readily apparent after 30 s and largely complete within 1 min. A more detailed view of protein-DNA interaction was obtained by introducing the fluorescence donor 6-CNTrp in RRM1 at position 137, and the acceptor 4-aminobenzo[g]quinazoline-2-one (Cf) in lieu of cytidine22 in the i-motif DNA. The course of binding of the two species was monitored by FRET, which reflected a steady increase in energy transfer over a period of several minutes. The FRET signal could be diminished by the further addition of (unlabeled) RRM2, no doubt reflecting competition for binding to the i-motif DNA. These experiments using the individual RRM domains from hnRNP LL confirm the role of this transcription factor in activation of BCL2 transcription via the i-motif in the promoter element.


Assuntos
DNA/genética , DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/química , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Bases , DNA/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
18.
Nucleic Acids Res ; 42(9): 5755-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24609386

RESUMO

Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules.


Assuntos
Benzoxazinas/química , Colestanos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Genes bcl-2 , Simulação de Dinâmica Molecular , Piperidinas/química , Pregnanos/química , Regiões Promotoras Genéticas , Algoritmos , Sequência de Bases , DNA/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/química , Humanos , Conformação de Ácido Nucleico , Reconhecimento Automatizado de Padrão , Ligação Proteica
19.
J Am Chem Soc ; 136(11): 4161-71, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24559410

RESUMO

It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression.


Assuntos
DNA/efeitos dos fármacos , Piperidinas/farmacologia , Pregnanodiol/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Termodinâmica , Animais , DNA/química , DNA/genética , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos SCID , Conformação de Ácido Nucleico/efeitos dos fármacos , Piperidinas/química , Pregnanodiol/análogos & derivados , Pregnanodiol/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
J Am Chem Soc ; 136(11): 4172-85, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24559432

RESUMO

In a companion paper (DOI: 10.021/ja410934b) we demonstrate that the C-rich strand of the cis-regulatory element in the BCL2 promoter element is highly dynamic in nature and can form either an i-motif or a flexible hairpin. Under physiological conditions these two secondary DNA structures are found in an equilibrium mixture, which can be shifted by the addition of small molecules that trap out either the i-motif (IMC-48) or the flexible hairpin (IMC-76). In cellular experiments we demonstrate that the addition of these molecules has opposite effects on BCL2 gene expression and furthermore that these effects are antagonistic. In this contribution we have identified a transcriptional factor that recognizes and binds to the BCL2 i-motif to activate transcription. The molecular basis for the recognition of the i-motif by hnRNP LL is determined, and we demonstrate that the protein unfolds the i-motif structure to form a stable single-stranded complex. In subsequent experiments we show that IMC-48 and IMC-76 have opposite, antagonistic effects on the formation of the hnRNP LL-i-motif complex as well as on the transcription factor occupancy at the BCL2 promoter. For the first time we propose that the i-motif acts as a molecular switch that controls gene expression and that small molecules that target the dynamic equilibrium of the i-motif and the flexible hairpin can differentially modulate gene expression.


Assuntos
Benzoxazinas/farmacologia , Colestanos/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Piperidinas/farmacologia , Pregnanos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/genética , Benzoxazinas/química , Linhagem Celular Tumoral , Colestanos/química , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/isolamento & purificação , Humanos , Células MCF-7 , Piperidinas/química , Pregnanos/química , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA