Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Complement Med Ther ; 24(1): 270, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010043

RESUMO

BACKGROUND: Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS: The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS: PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION: The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.


Assuntos
Doxorrubicina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Extratos Vegetais , Plantas Medicinais , Rabdomiossarcoma , Fotoquimioterapia/métodos , Humanos , Doxorrubicina/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Plantas Medicinais/química , Solanum/química , Sobrevivência Celular/efeitos dos fármacos , Moringa oleifera/química
2.
RSC Adv ; 14(23): 16432-16444, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774612

RESUMO

In the realm of corrosion mitigation, the search for sustainable and ecologically accountable inhibitors attracts significant interest from the environmental point of view. This study investigates the intriguing possibilities presented by Erigeron bonariensis (EB) as a green and innovative corrosion inhibitor for weathering steel in 1 M H2SO4. EB, a naturally abundant plant species, holds promise as a green and sustainable inhibitor due to its inherent chemical composition in the environment. The intricate interplay between the phytochemical constituents of the extract and the corrosive environment is meticulously deciphered. Furthermore, the environmentally benign nature of the inhibitor adds an extra layer of significance to its application, aligning with contemporary green chemistry principles. The inhibition effect of Erigeron bonariensis (EB) extract on the corrosion of mild steel in acidic media (H2SO4) was studied using weight loss, absorption studies, phytochemical analysis, electrochemical methods, and scanning electron microscopy. The experimental findings revealed that an increase in inhibitor concentration is correlated with higher inhibition efficiency. The adsorption of inhibitor molecules on the mild steel surface was found to agree with the UV-Vis adsorption spectrum. Additionally, a surface study conducted using scanning electron microscopy indicated notable differences in the presence and absence of inhibitors for weathering steel. At 2000 mg L-1, EB extract has the best inhibitory efficiency for weathering steel in 1 M H2SO4 of 99.50% by the leaf part, followed by 94.35% by the flower part, and 85.22% by the stem part. Overall, this study suggests that EB extract serves as a promising alternative for corrosion prevention, demonstrating significant inhibition efficiency.

3.
Sci Rep ; 14(1): 9049, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643196

RESUMO

Doxorubicin (DOX) is a highly effective, commonly prescribed, potent anti-neoplastic drug that damages the testicular tissues and leads to infertility. Apigetrin (APG) is an important flavonoid that shows diverse biological activities. The present research was designed to evaluate the alleviative role of APG against DOX-induced testicular damages in rats. Forty-eight adult male albino rats were randomly distributed into 4 groups, control, DOX administered (3 mgkg-1), DOX + APG co-administered (3 mgkg-1 of DOX; 15 mgkg-1 of APG), and APG administered group (15 mgkg-1). Results of the current study indicated that DOX treatment significantly reduced the activities of superoxide dismutase (SOD), glutathione reductase (GSR), catalase (CAT) and glutathione peroxidase (GPx), while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). DOX treatment also reduced the sperm count, viability, and motility. Moreover, DOX significantly increased the sperm morphological anomalies and reduced the levels of plasma testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The administration of DOX significantly increased the expressions of Bax and Caspase-3, as well as the levels of inflammatory markers. Additionally, DOX treatment significantly downregulated the expressions of steroidogenic enzymes (StAR, 3ß-HSD and 17ß-HSD) and Bcl-2. Furthermore, DOX administration provoked significant histopathological abnormalities in the testicular tissues. However, APG supplementation significantly reversed all the testicular damages due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature. Therefore, it is concluded that APG may prove a promising therapeutic agent to treat DOX-induced testicular damages.


Assuntos
Apigenina , Estresse Oxidativo , Sêmen , Masculino , Ratos , Animais , Ratos Wistar , Sêmen/metabolismo , Testículo/metabolismo , Antioxidantes/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Testosterona
4.
BMC Womens Health ; 24(1): 90, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311739

RESUMO

BACKGROUND: In Pakistan, the death rate for post-menopausal women with breast cancer is significant due to late detection and delayed referral to proper facilities. There are a few reports on Pakistan's epidemiology and breast cancer risk factors. There are modifiable and non-modifiable risk factors associated with the development of breast carcinoma; of which body mass index (BMI), central obesity, and lipid profile are considered as major risk markers. METHODS: This was a cross-sectional analytical study. A total of 384 women constituted the present study sample. Purposive sampling was used to collect 192 confirmed new breast cancer cases throughout the study. By using basic random sampling, an equal number of controls were chosen. Studied parameters included age, fasting blood sugar, cholesterol, triglyceride, serum high-density lipoprotein, cholesterol, serum low-density lipoprotein cholesterol, weight, height, BMI, waist circumference, and waist-to-hip ratio. The inclusion criteria of this study were post-menopausal women (45-65 years) in Pakistan. The confirmation of breast carcinoma was done through histopathology. Breast cancer occurrence was taken as a dependent variable, whereas BMI, central obesity, and lipid profile were taken as independent variables. RESULTS: Studied risk factors (cholesterol, BMI, and central obesity) significantly correlated with breast cancer. Cholesterol has a significantly high positive correlation (0.646) with breast cancer. BMI has a positive significant correlation (0.491) with breast cancer, and central obesity has a low but positive significant correlation (0.266) with breast cancer. Moreover, the binary logistic regression model also showed a significant association between biochemical factors and breast cancer occurrence. Regression analysis depicted a linear relationship between a dependent variable (breast cancer occurrence) and independent variables (central obesity, cholesterol, BMI). CONCLUSION: Postmenopausal overweight (central obesity), increased BMI and high cholesterol levels are major risk factors for breast cancer. Moreover, high total cholesterol proved to be the most significant risk marker for the occurrence of breast cancer in post-menopausal women of Pakistan.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Índice de Massa Corporal , Estudos Transversais , Neoplasias da Mama/complicações , Pós-Menopausa , Obesidade Abdominal/complicações , Paquistão/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Fatores de Risco , Triglicerídeos , Colesterol
5.
J Ovarian Res ; 17(1): 27, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281964

RESUMO

BACKGROUND: Polycystic Ovary Syndrome (PCOS) affects a significant proportion of human females worldwide and is characterized by hormonal, metabolic, and reproductive dysfunctions, including infertility, irregular menstrual cycles, acanthosis nigricans, and hirsutism. Mutations in the estrogen receptor genes ESR1 and ESR2, involved in normal follicular development and ovulation, can contribute to development of the PCOS. The present study focuses on investigating the potential correlation between single nucleotide polymorphisms (SNPs) of ESR1 and ESR2 genes and the incidence of this syndrome. METHODS: For this study, SNPs in ESR1 and ESR2 genes were retrieved from the ENSEMBL database and analyzed for their effect on mutated proteins using different bioinformatics tools including SIFT, PolyPhen, CADD, REVEL, MetaLR, I-Mutant, CELLO2GO, ProtParam, SOPMA, SWISS-MODEL and HDDOCK. RESULTS: All the SNPs documented in the present study were deleterious. All the SNPs except rs1583384537, rs1450198518, and rs78255744 decreased protein stability. Two variants rs1463893698 and rs766843910 in the ESR2 gene altered the localization of mutated proteins i.e. in addition to the nucleus, proteins were also found in mitochondria and extracellular, respectively. SNPs rs104893956 in ESR1 and rs140630557, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene significantly changed the secondary structure of proteins (2D). SNPs that markedly changed 3D configuration included rs1554259481, rs188957694 and rs755667747 in ESR1 gene and rs1463893698, rs140630557, rs1596423459, rs766843910, rs1596405923, rs762454979 and rs1384121511 in ESR2 gene. Variants rs1467954450 (ESR1) and rs140630557 (ESR2) were identified to reduce the binding tendency of ESRα and ß receptors with estradiol as reflected by the docking scores i.e. -164.97 and -173.23, respectively. CONCLUSION: Due to the significant impact on the encoded proteins, these variants might be proposed as biomarkers to predict the likelihood of developing PCOS in the future and for diagnostic purposes.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Síndrome do Ovário Policístico , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Estradiol , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Síndrome do Ovário Policístico/genética
6.
Appl Biochem Biotechnol ; 196(3): 1464-1480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37418128

RESUMO

Lactoferrin is a multifunctional glycoprotein present in mammalian milk. It possesses antimicrobial, antioxidant, immunomodulatory, and several biological functions. Owing to the current trend of increasing antibiotic resistance, our study was designed to purify lactoferrin from camel milk colostrum using cation exchange chromatography on the SP-Sepharose high-performance column. The purity and molecular weight of lactoferrin were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The chromatogram of the purification procedure illustrated a single peak corresponding to lactoferrin, while the SDS-PAGE revealed 78 kDa molecular weight protein. Furthermore, lactoferrin protein and its hydrolysate form were assessed for its antimicrobial potential. The highest inhibitory effect of whole lactoferrin at the concentration (4 mg/ml) was observed against methicillin-resistant S. aureus (MRSA) and S. aureus, while 10 mg/ml concentration was effective against K. pneumonia, and 27 mg/ml was potent against multidrug-resistant (MDR) bacteria, P. aeruginosa. Likewise, MRSA was more sensitive toward iron-free lactoferrin (2 mg/ml) and hydrolyzed lactoferrin (6 mg/ml). The tested lactoferrin forms showed variability in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) among tested bacteria. The scanning electron microscopy (SEM) analysis images revealed distortions of the bacterial cells exposed to lactoferrin. The antibiofilm effect differed depending on the concentration and the type of the bacteria; biofilm inhibition ranged from 12.5 to 91.3% in the tested pathogenic bacteria. Moreover, the anticancer activity of lactoferrin forms exhibited a dose-dependent cytotoxicity against human lung cancer cell line (A549).


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Lactoferrina/farmacologia , Lactoferrina/química , Staphylococcus aureus , Camelus , Leite/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Bactérias , Biofilmes , Antibacterianos/química
7.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904338

RESUMO

Antimicrobial resistance poses a significant challenge to public health, especially in developing countries, due to a substantial rise in bacterial resistance. This situation has become so concerning that we are now at risk of losing the effectiveness of antibiotics altogether. Recent research has firmly established that bacteria engage in a process called quorum sensing (QS). QS regulates various functions, including nutrient scavenging, immune response suppression, increased virulence, biofilm formation and mobility. Pseudomonas aeruginosa, an opportunistic bacterial pathogen, plays a significant role in various medical conditions such as chronic wounds, corneal infections, burn wounds and cystic fibrosis. While antibiotics are effective in killing bacteria, only a few antibiotics, particularly those from the ß-lactam group, have been studied for their impact on the quorum sensing of P. aeruginosa. Given the lack of concentrated efforts in this area, we have investigated the role of ß-lactam antibiotics on various potential targets of P. aeruginosa. Based on their toxicological profiles and the average binding energy obtained through molecular docking, azlocillin and moxalactam have emerged as lead antibiotics. The binding energy for the docking of azlocillin and moxalactam with LasA was determined to be -8.2 and -8.6 kcal/mol, respectively. Molecular simulation analysis has confirmed the stable interaction of both these ligands with all three target proteins (LasI, LasA and PqsR) under physiological conditions. The results of this research underscore the effectiveness of azlocillin and moxalactam. These two antibiotics may be repurposed to target the quorum sensing of P. aeruginosa.Communicated by Ramaswamy H. Sarma.

8.
Environ Sci Pollut Res Int ; 30(46): 102462-102473, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667127

RESUMO

This research study aims to potential utilization of Citrus maxima peel waste and optimize the hydrothermal liquefaction process for the production of bio-oil (BO) and bio-char (BC). The effect of several HTL processing variables on BO yield (%) and BC yield (%), including temperature, retention period, and slurry concentration, has been examined using central composite design (CCD) (a three-level three-factor design). The optimized values of HTL process variables were found to be 240 °C (temperature), 52 min (retention time), and 7% (slurry concentration) and the corresponding responses were 5.794% (BO yield) and 29.450% (BC yield). The values obtained from the RSM-CCD model as the predicted values agreed with the experimental values (5.93% and 30.14%). Further the BO and BC obtained under optimized conditions and CPP were analyzed to identify the variations by 1H-NMR, GC-MS, FT-IR, and CHNO-S.

9.
Antibiotics (Basel) ; 11(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35052936

RESUMO

The current study aimed to screen the preliminary phytochemicals in the leaf extract of the medicinal plant Simarouba glauca and to analyze its potential antimicrobial, antioxidant and anticancer properties. The phytochemical profile of the methanol extract was analyzed, and bioactive compounds were identified using chromatography, FTIR and GCMS. Antimicrobial activity and Minimum Inhibitory Concentration (MIC) were determined against 14 bacterial and 6 fungal strains. Moreover, the synergistic effect of a plant extract with commercially available antibiotics was also evaluated using the checkerboard method. The ethanolic and methanolic extracts showed exclusive activity against S. aureus and profound activity against E. coli and S. marcescens. Upon comparing breakpoints, methanolic extract demonstrated higher antimicrobial activity with a MIC value of 3.2 mg/mL against the test pathogens. Furthermore, the extracts demonstrated potential antioxidant activity; methanol extract had higher antioxidant potential compared to the ethanol extract. The major proactive bioactive compound with maximum antioxidant capacity was observed to be terpenoids. The methanol extract of S. glauca showed significant cytotoxicity against the MCF-7 breast cancer cell line with an IC50 value of 16.12 µg/mL. The overall results of our work provide significant evidence for the usage of methanolic extract of S. glauca as an efficient ethnomedicinal agent and a potential candidate for relieving many human ailments.

10.
ACS Omega ; 6(11): 7922-7930, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778303

RESUMO

Recent research has advocated the significant contribution of metal dyshomeostasis in developing and progressing Alzheimer's disease (AD). Disruption of homeostasis creates an imbalance of the metal ions that causes neuronal dysfunction and death. Flavonoids such as quercetin and naringenin play an essential role in iron homeostasis and are widely explored in treating various complex diseases. Iron is a critical player in many physiological activities, and hence, its homeostasis is essential for the normal functioning of the brain. Iron deficiency and iron overload contribute to AD development, highlighting the importance of maintaining iron homeostasis. Ferritin is an iron protein associated with the storage and sequestration of excess ferrous iron, playing a pivotal role in maintaining iron levels. Flavonoids are the most common polyphenolic compounds present in the human diet and are known to exert multiple neuroprotective actions. Naringenin and quercetin are extensively explored polyphenols having a broad range of therapeutic potential ranging from cancers to neurodegenerative disorders. This study aims to investigate their binding, employing molecular docking and molecular dynamics (MD) simulation in light of these polyphenols' and ferritin's therapeutic importance in AD. In this study, we performed structure-based docking of quercetin and naringenin with human ferritin. First, the binding affinity of quercetin and naringenin toward ferritin was estimated, and then their close interactions were explored to find the stable poses. All-atom 100 ns MD simulations further escorted the docking study, followed by principal component and free energy landscape analyses. The dynamic studies helped investigate the conformational dynamic, structural stability, and interaction mechanism of ferritin with quercetin and naringenin. The MD analysis suggested that the binding of quercetin and naringenin with ferritin stabilizes throughout the simulation period and leads to fewer conformational deviations. This study gives an insight at the atomistic level into the interaction between quercetin and naringenin with ferritin, thereby aiding in understanding the activity and mechanism of protein and drug binding. The study is clinically significant as iron participates in the occurrence of AD.

11.
Biomolecules ; 11(2)2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573343

RESUMO

Green synthesis of metal nanoparticles using plant extracts as capping and reducing agents for the biomedical applications has received considerable attention. Moreover, emergence and spread of multidrug resistance among bacterial pathogens has become a major health concern and lookout for novel alternative effective drugs has gained momentum. In current study, we synthesized gold nanoparticles using the seed extract of Trachyspermum ammi (TA-AuNPs), assessed its efficacy against drug resistant biofilms of Listeria monocytogenes and Serratia marcescens, and evaluated its anticancer potential against HepG2 cancer cell lines. Microwave-assisted green synthesis of gold nanoparticles was carried out and characterization was done using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Most nanoparticles were observed as spherical and spheroidal with few anisotropies with an average crystalline size of 16.63 nm. Synthesized TA-AuNPs demonstrated significant biofilm inhibitory activity against L. monocytogenes (73%) as well as S. marcescens (81%). Exopolysaccharide (EPS), motility, and CSH, key elements that facilitate the formation and maintenance of biofilm were also inhibited significantly at the tested sub-minimum inhibitory concentrations (sub-MICs). Further, TA-AuNPs effectively obliterated preformed mature biofilms of S. marcescens and L. monocytogenes by 64% and 58%, respectively. Induction of intracellular ROS production in TA-AuNPs treated bacterial cells could be the plausible mechanism for the reduced biofilm formation in test pathogens. Administration of TA-AuNPs resulted in the arrest of cellular proliferation in a concentration-dependent manner. TA-AuNPs decrease the intracellular GSH in HepG2 cancer cell lines, cells become more prone to ROS generation, hence induce apoptosis. Thus, this work proposes a new eco-friendly and rapid approach for fabricating NPs which can be exploited for multifarious biomedical applications.


Assuntos
Antineoplásicos/farmacologia , Apiaceae/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Sementes/metabolismo , Anisotropia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Sobrevivência Celular , Glutationa Transferase/metabolismo , Química Verde , Células Hep G2 , Humanos , Luz , Peroxidação de Lipídeos , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Micro-Ondas , Extratos Vegetais/farmacologia , Polissacarídeos Bacterianos/química , Espalhamento de Radiação , Serratia marcescens/efeitos dos fármacos , Sais de Tetrazólio/química , Tiazóis/química , Difração de Raios X
12.
Int J Biol Macromol ; 177: 1-9, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33577820

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from China has become a global threat due to the continuous rise in cases of Coronavirus disease 2019 (COVID-19). The problem with COVID-19 therapeutics is due to complexity of the mechanism of the pathogenesis of this virus. In this review, an extensive analysis of genome architecture and mode of pathogenesis of SARS-CoV-2 with an emphasis on therapeutic approaches is performed. SARS-CoV-2 genome consists of a single, ~29.9 kb long RNA having significant sequence similarity to BAT-CoV, SARS-CoV and MERS-CoV genome. Two-third part of SARS-Cov-2 genome comprises of ORF (ORF1ab) resulting in the formation of 2 polyproteins, pp1a and pp1ab, later processed into 16 smaller non-structural proteins (NSPs). The four major structural proteins of SARS-CoV-2 are the spike surface glycoprotein (S), a small envelope (E), membrane (M), and nucleocapsid (N) proteins. S protein helps in receptor binding and membrane fusion and hence plays the most important role in the transmission of CoVs. Priming of S protein is done by serine 2 transmembrane protease and thus plays a key role in virus and host cell fusion. This review highlights the possible mechanism of action of SARS-CoV-2 to search for possible therapeutic options.


Assuntos
Tratamento Farmacológico da COVID-19 , Genoma Viral , SARS-CoV-2/genética , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
13.
Obes Surg ; 31(5): 1929-1936, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33409981

RESUMO

BACKGROUND: Evidence from real-world studies have suggested a reduced rate of macrovascular complications following bariatric surgery. We undertook this meta-analysis to investigate the impact of bariatric surgery on macrovascular disease outcomes in severely obese type 2 diabetes mellitus (T2DM) patients. METHODS: An extensive literature search was performed in PubMed from inception until March 2020. All cohort studies assessing the association between bariatric surgery and macrovascular complications in severely obese T2DM patients were included. Two independent reviewers screened the articles, extracted data, and assessed the quality using the Newcastle-Ottawa Scale. The primary outcome was to assess the impact of bariatric surgery and the risk of macrovascular complications. Statistical analysis was performed using Review Manager 5.3. RESULTS: This meta-analysis comprised of five studies including 49,211 participants (75% female), of which 14,434 underwent bariatric surgery and 34,777 underwent usual care. Participants who underwent bariatric surgery had a significantly lower risk of macrovascular complications as compared to those with non-surgical interventions (RR: 0.50 [95% CI: 0.35-0.73], p = 0.0003). In the subgroup analysis, based on the geographical regions, studies conducted in the USA showed a higher reduction (RR: 0.41 [95% CI: 0.32-0.53], p < 0.00001) in macrovascular complications as compared to other parts of the world. The risk of all-cause mortality was also significantly lower in patients with bariatric surgery (RR 0.39 [95% CI: 0.30-0.50], p < 0.00001). CONCLUSION: Bariatric surgery was associated with a 50% reduction in macrovascular complications along with 61% reduction in risk of all-cause mortality in morbidly obese T2DM patients.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Doenças Vasculares , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/cirurgia , Feminino , Humanos , Masculino , Obesidade Mórbida/cirurgia , Doenças Vasculares/etiologia
14.
J Biomol Struct Dyn ; 39(3): 777-786, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31960772

RESUMO

Methylglyoxal (MG) is a potent glycating agent which reacts with proteins to form advanced glycation end products (AGEs). These chemically stable AGEs crosslink with proteins and could lead to amyloid formation that has the role in several diseases including Alzheimer's and Parkinson's. In this piece of work, glycation-induced conformational changes in HSA were observed with quenching of tryptophan fluorescence by 73.8% (41 nm red shift) and loss of hydrophobicity of HSA. CD spectroscopy result reaffirmed secondary structure changes in HSA. Moreover, MG-induced changes in HSA, proceeds to amyloid structure as characterized by an increase in thioflavin (ThT) fluorescence and transmission electron microscopy (TEM) images of HSA aggregates. Quercetin was found to inhibit both AGEs production and amyloid formation. Viability of MCF-7 cells was found to be increased with AGEs treatment, illustrating proliferation of cancer cells. Wound healing assay also revealed increased proliferation and migration of cells in the presence of AGEs. Additionally, molecular docking analyses were performed to demonstrate interactions involved in the stabilization of HSA-quercetin complex. The binding affinities of quercetin were found to be (K d = 105 M -1) much higher compared with MG (K d = 102 M -1). From this study, it is quite clear that quercetin reverses the effect of MG by sterically inhibiting the interaction between HSA and MG. Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Quercetina , Proliferação de Células , Produtos Finais de Glicação Avançada , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Espectrometria de Fluorescência , Análise Espectral
15.
RSC Adv ; 11(43): 26710-26720, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479994

RESUMO

Lactoferrin is a heme-binding multifunctional glycoprotein known for iron transportation in the blood and also contributes to innate immunity. In this study, the interaction of theaflavin monogallate, a polyphenolic component of black tea, with camel milk lactoferrin was studied using various biophysical and computational techniques. Fluorescence quenching at different temperatures suggests that theaflavin monogallate interacted with lactoferrin by forming a non-fluorescent complex, i.e., static quenching. Theaflavin monogallate shows a significant affinity towards lactoferrin with a binding constant of ∼104-105 M-1 at different temperatures. ANS binding shows that the binding of polyphenol resulted in the burial of hydrophobic domains of lactoferrin. Moreover, thermodynamic parameters (ΔH, ΔS and ΔG) suggested that the interaction between protein and polyphenol was entropically favored and spontaneous. Circular dichroism confirmed there was no alteration in the secondary structure of lactoferrin. The energy transfer efficiency (FRET) from lactoferrin to theaflavin was found to be approximately 50%, with a distance between protein and polyphenol of 2.44 nm. Molecular docking shows that the binding energy of lactoferrin-theaflavin monogallate interaction was -9.7 kcal mol-1. Theaflavin monogallate was bound at the central cavity of lactoferrin and formed hydrogen bonds with Gln89, Tyr192, Lys301, Ser303, Gln87, and Val250 of lactoferrin. Other residues, such as Tyr82, Tyr92, and Tyr192, were involved in hydrophobic interactions. The calculation of various molecular dynamics simulations parameters indicated the formation of a stable complex between protein and polyphenol. This study delineates the binding mechanism of polyphenol with milk protein and could be helpful in milk formulations and play a key role in the food industry.

16.
J Biomol Struct Dyn ; 39(6): 2014-2020, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228291

RESUMO

The unavoidable glycation reaction is the major cause of diabetes and metabolic disorders. The glycation reaction is enhanced in case when the glycating agent is reactive carbonyl species (RCS) like, methylglyoxal (MG). The impact of RCS may result into the diabetes mellitus and its secondary complications along-with its role in cancers too. This reaction can be discontinued by using natural product inhibitors or by chemically synthesized drugs, like aminoguanidine (AG). However, AG is reported to be nephrotoxic (toxic to kidneys) at a concentration of 10 mM or more and has therefore serious health concerns. In the present study, bioconjugation of AG was done with the gold nanoparticles (Gnps) to mitigate its toxic effect and upsurge the efficacy of AG on RCS induced glycation. The AG-Gnps formed waas characterized by UV-Vis. spectroscopy and it reveals a peak at 529 nm corresponding to AG-gold nanoparticles. The particle size of the AG-Gnp was found to be 12 nm in TEM while in DLS it was found to be 54.07 nm. The fluorescence studies in combination with GK-peptide and δ-Glu assay support the inhibition of AGEs by AG-Gnps. Based on the idea of gold nano-particle synthesis, it is anticipated, the toxicity of numerous drugs used at high doses can be diminished with additional efficiency.Communicated by Ramaswamy H. Sarma.


Assuntos
Ouro , Nanopartículas Metálicas , Glicosilação , Guanidinas
17.
Curr Med Chem ; 28(39): 8068-8082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33167824

RESUMO

Over the past several decades, plant-derived products (phytochemicals) have been suggested to possess immense therapeutic potential. Among these phytochemicals, different flavonoids have been reported for their potent anticancer activity. To exhibit their anticancer potential, these flavonoids modulate different signaling pathways. Among these pathways, the mammalian target of rapamycin (mTOR) and associated phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt) signaling cascade have been reported as a pivotal modulator of cell survival, proliferation, and death/apoptosis. Hence, targeting this cascade could be an ideal strategy to alleviate apoptosis and inhibit proliferation in different forms of cancer. The targeting of PI3K/Akt/mTOR by flavonoids have been well documented in the scientific literature. In the current study, we have studied the anticancer potential of various flavonoids, especially flavones, flavonols, and isoflavones that include apigenin, luteolin, baicalein, tangeretin, epigallocatechin- 3-gallate, genistein, and daidzein especially dealing with mTOR targeting.


Assuntos
Flavonoides , Neoplasias , Quimioprevenção , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
18.
ACS Omega ; 5(47): 30383-30394, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283086

RESUMO

The aim of this research work is to develop polyesteramide [LMPEA] nanocomposite coating material [LMPEA/Ag] using N,N-bis(2-hydroxyethyl) fatty amide obtained from non-edible Leucaena leucocephala [LL] seed oil [LLO], and maleic anhydride, reinforced with silver nanoparticles [SNPs], biosynthesized in Leucaena leucocephala leaf extract. UV, XRD, TEM, and particle size analyses confirmed the biosynthesis of NP (37.55 nm). FTIR and NMR established the structure of LMPEA formed by esterification reaction, without any solvent/diluent. Coatings were mechanically strong, well adherent to substrate, flexibility retentive, hydrophobic, and antimicrobial as evident from good scratch hardness (2-3 kg), impact resistance (150 lb per inch), bend test (1/8 inch), high water contact angle measurement value (109°) relative to pristine LMPEA coating (89°), and broad-spectrum antimicrobial behavior against MRSA, P. aeruginosa, E. coli, A. baumannii, and C. albicans. LMPEA and LMPEA/Ag exhibited high corrosion protection efficiencies, 99.81% and 99.94%, respectively, in (3.5% w/v) NaCl solution for 20 days and safe usage up to 200 °C. The synthesized nanocomposite coatings provide an alternate pathway for utilization of non-edible Leucaena leucocephala seed oil through a safer chemical synthesis route, without the use/generation of any harmful solvent/toxic products, adopting "Green Chemistry" principles.

19.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348597

RESUMO

Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.


Assuntos
Cobre/química , Resinas Epóxi/química , Retardadores de Chama/síntese química , Piperazinas/síntese química , Polímeros/química , Compostos Benzidrílicos/química , Calorimetria , Análise Diferencial Térmica , Fenóis/química , Piperazinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas/química
20.
Polymers (Basel) ; 12(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212915

RESUMO

Ethylenediamine modified Ammonium polyphosphate (EDA-MAPP), and Charring-Foaming Agents (CFA) was prepared via a simple chemical approach and further utilizes for the preparation of Epoxy resin based intumescent flame retardation coatings. The ratio belongs to MAPP and CFA was fixed at 2:1 ratio. Comparative thermo gravimetric analysis TGA study of Modified Ammonium polyphosphate (MAPP) and Ammonium polyphosphate (APP) investigated. Sb2O3 was introduced into flame retardation coating formulation at various amounts to evaluate the synergistic action of Sb2O3 along with flame retardant coating system. The synergistic action of Sb2O3 on flame retardation coating formulation was studied by vertical burning test (UL-94V), thermo gravimetric analysis (TGA), Limited Oxygen Index (LOI), and Fourier Transform Infra-Red spectroscopy (FTIR). The UL-94V results indicated that adding Sb2O3 effectively increased flame retardancy and meets V-0 ratings at each concentration. The TGA results revealed that the amalgamation of Sb2O3 at each concentration effectively increased the thermal stability of the flame retardant coating system. Cone-calorimeter study results that Sb2O3 successfully minimized the combustion parameters like, Peak Heat Release Rate (PHRR), and Total Heat Release (THR). The FTIR result shows that Sb2O3 can react with MAPP and generates the dense-charred layer which prevents the transfer of heat and oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA