Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Neurophysiol ; 157: 37-43, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042011

RESUMO

OBJECTIVE: This study investigates variations in hippocampal barque occurrence during sleep and compares findings to respective variations of their scalp manifestation as 14&6/sec positive spikes. METHODS: From 11 epilepsy patients, 12 non-epileptogenic hippocampi with barques were identified for this study. Using the first seizure-free whole-night sleep stereo-encephalography (sEEG) recording, we performed sleep staging and measured the occurrence of barques and 14&6/sec positive spikes variants. RESULTS: Hippocampal barques (total count: 9,183; mean count per record: 765.2 ± 251.2) occurred predominantly during non-rapid eye movement (NREM) II sleep (total: 5,744; mean: 478.6 ± 176.1; 62.2 ± 6.0%) and slow-wave sleep (SWS) (total: 2,950; mean: 245.83 ± 92.9; 32.0 ± 6.2%), with rare to occasional occurrence in NREM I (total: 85; mean: 7.0 ± 2.8; 0.9 ± 0.4%), rapid eye movement (REM) (total: 153; mean: 12.75 ± 4.0; 1.7 ± 0.6) and wakefulness (total: 251; mean: 20.9 ± 6.3; 2.9 ± 0.9%). Barque rate increased during SWS (mean: 2.7 ± 1.0 per min) compared to NREM II (2.2 ± 1.0 per min) and other states (wakefulness: 0.1 ± 0.0 per min; NREM I: 0.3 ± 0.1 per min; REM: 0.1 ± 0.0 per min). The 14&6/sec positive spikes variant (total count: 2,406; mean: 343.7 ± 106.7) was present in NREM II (total: 2,059; mean: 249.1 ± 100.2, 84.9 ± 3.6%) and SWS (total: 347; mean: 49.5 ± 12.8, 15.0 ± 3.6%) stages, and absent from the rest of sleep and wakefulness. While all 14&6/sec positive spikes correlated with barques, only 44.7 ± 6.1% of barques manifested as 14&6/sec positive spikes. CONCLUSIONS: Hippocampal barques are predominant in NREM II and SWS, and tend to increase their presence during SWS. Their scalp manifestation as 14&6/sec positive spikes is confounded by wakefulness, REM and NREM I stages, and "masked" by the co-occurrence of NREM II and SWS slow waves, and overlapping reactive micro-arousal elements. SIGNIFICANCE: Our study highlighted the overnight profile of hippocampal barques, in relation to the respective profile of their scalp manifestation, the 14&6/sec positive spikes variant.


Assuntos
Eletroencefalografia , Sono , Humanos , Sono/fisiologia , Vigília/fisiologia , Nível de Alerta/fisiologia , Hipocampo/fisiologia , Fases do Sono/fisiologia
2.
World Neurosurg ; 171: e654-e671, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36549438

RESUMO

BACKGROUND: Laser interstitial thermal therapy (LITT) is a minimally invasive treatment option for intracranial tumors that are challenging to treat via traditional methods; however, its safety and efficacy are not yet well validated in the literature. The objectives of the study were to assess the available evidence of the indications and adverse events (AEs) of LITT and 1-year progression-free survival and 1-year overall survival in the treatment of primary and secondary brain tumors. METHODS: A comprehensive literature search was conducted through the databases PubMed, Embase, and the Cochrane Library until October 2021. Comparative and descriptive studies, except for case reports, were included in the meta-analysis. Separate analyses by tumor type (high-grade gliomas, including World Health Organization grade 4 astrocytomas [which include glioblastomas] as a specific subgroup; low-grade gliomas; and brain metastases) were conducted. Pooled effect sizes and their 95% confidence intervals (CI) were generated via random-effects models. RESULTS: Forty-five studies met the inclusion criteria, yielding 826 patients for meta-analysis. There were 829 lesions in total, of which 361 were classified as high-grade gliomas, 116 as low-grade gliomas, 337 as metastatic brain tumors, and 15 as nonglial tumors. Indications for offering LITT included deep/inaccessible tumor (12 studies), salvage therapy after failed radiosurgery (9), failures of ≥2 treatment options (3), in pediatric patients (4), patient preference (1); indications were nonspecific in 12 studies. Pooled incidence of all (minor or major) procedure-related AEs was 30% (95% CI, 27%-40%) for all tumors. Pooled incidence of neurologic deficits (minor or major) was 16% (12%-22%); postprocedural edema 14% (8%-22%); seizure 6% (4%-9%); hematoma 20% (14%-29%); deep vein thrombosis 19% (11%-30%); hydrocephalus 8% (5%-12%); and wound infection 5% (3%-7%). One-year progression-free survival was 18.6% (11.3%-29.0%) in high-grade gliomas, 16.9% (11.6%-24.0%) among the grade 4 astrocytomas; and 51.2% (36.7%-65.5%) in brain metastases. One-year overall survival was 43.0% (36.0%-50.0%) in high-grade glioma, 45.9% (95% CI, 37.9%-54%) in grade 4 astrocytomas; 93.0% (42.3%-100%) in low-grade gliomas, and 56.3% (47.0%-65.3%) in brain metastases. CONCLUSIONS: New neurologic deficits and postprocedural edema were the most reported AEs after LITT, albeit mostly transient. This meta-analysis provides the best statistical estimates of progression and survival outcomes based on the available information. LITT is generally a safe procedure for selected patients, and future well-designed comparative studies on its outcomes versus the current standard of care should be performed.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Terapia a Laser , Humanos , Criança , Terapia a Laser/métodos , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Glioblastoma/cirurgia , Lasers
3.
Clin Neurophysiol ; 136: 150-157, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168029

RESUMO

OBJECTIVE: To investigate whether barques can be localized across the hippocampal longitudinal axis with sufficient specificity. METHODS: We identified 51 focal epilepsy patients implanted with a minimum of two electrodes - unilateral anterior and posterior - in either hippocampus. We used visual inspection of the intracranial electroencephalogram (iEEG) and 3D brain volume spectrum-based statistical parametric mapping (SPM) to localize barques. RESULTS: In 18/51 patients (35.29%), barques were identified in 22/70 (31.42%) hippocampi. In all hippocampi (100%), barques were present in the posterior hippocampus, while 9 (40.90%) showed concurrent non-independent barque activity anteriorly (P < 0.0001). Statistical parametric mapping confirmed the posterior barque localization, with significant differences in t-values (t(27) = 8.08, P < 0.0001) and z-scores (t(24) = 6.85, P < 0.0001) between anterior and posterior hippocampal barque activity. Posterior lateral extrahippocampal contacts demonstrated phase reversals of positive polarity during barque activity (P = 0.0092, compared to anterior extrahippocampal contacts). CONCLUSIONS: This study highlights the posterior hippocampal predominance of barques. Our findings are concordant with the posterior distribution of the scalp manifestation of barques as "14&6/sec positive spikes". The posterio-lateral hippocampal barque phase reversal can explain the positive polarity of scalp 14&6/sec spikes. SIGNIFICANCE: Understanding the properties of barques is critical for the iEEG interpretation in epilepsy surgery evaluations that include the hippocampus.


Assuntos
Epilepsias Parciais , Hipocampo , Eletrodos , Eletroencefalografia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Couro Cabeludo
4.
Epilepsia Open ; 7(1): 36-45, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34786887

RESUMO

OBJECTIVE: The question of whether a patient with presumed temporal lobe seizures should proceed directly to temporal lobectomy surgery versus undergo intracranial monitoring arises commonly. We evaluate the effect of intracranial monitoring on seizure outcome in a retrospective cohort of consecutive subjects who specifically underwent an anterior temporal lobectomy (ATL) for refractory temporal lobe epilepsy (TLE). METHODS: We performed a retrospective analysis of 85 patients with focal refractory TLE who underwent ATL following: (a) intracranial monitoring via craniotomy and subdural/depth electrodes (SDE/DE), (b) intracranial monitoring via stereotactic electroencephalography (sEEG), or (c) no intracranial monitoring (direct ATL-dATL). For each subject, the presurgical primary hypothesis for epileptogenic zone localization was characterized as unilateral TLE, unilateral TLE plus (TLE+), or TLE with bilateral/poor lateralization. RESULTS: At one-year and most recent follow-up, Engel Class I and combined I/II outcomes did not differ significantly between the groups. Outcomes were better in the dATL group compared to the intracranial monitoring groups for lesional cases but were similar in nonlesional cases. Those requiring intracranial monitoring for a hypothesis of TLE+had similar outcomes with either intracranial monitoring approach. sEEG was the only approach used in patients with bilateral or poorly lateralized TLE, resulting in 77.8% of patients seizure-free at last follow-up. Importantly, for 85% of patients undergoing SEEG, recommendation for ATL resulted from modifying the primary hypothesis based on iEEG data. SIGNIFICANCE: Our study highlights the value of intracranial monitoring in equalizing seizure outcomes in difficult-to-treat TLE patients undergoing ATL.


Assuntos
Craniotomia , Convulsões , Liberdade , Humanos , Estudos Retrospectivos , Convulsões/cirurgia , Resultado do Tratamento
5.
Clin Neurophysiol ; 132(12): 3002-3009, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715425

RESUMO

OBJECTIVE: To assess whether hippocampal spindles and barques are markers of epileptogenicity. METHODS: Focal epilepsy patients that underwent stereo-electroencephalography implantation with at least one electrode in their hippocampus were selected (n = 75). The occurrence of spindles and barques in the hippocampus was evaluated in each patient. We created pairs of pathologic and pathology-free groups according to two sets of criteria: 1. Non-invasive diagnostic criteria (patients grouped according to focal epilepsy classification). 2. Intracranial neurophysiological criteria (patient's hippocampi grouped according to their seizure onset involvement). RESULTS: Hippocampal spindles and barques appear equally often in both pathologic and pathology-free groups, both for non-invasive (Pspindles = 0.73; Pbarques = 0.46) and intracranial criteria (Pspindles = 0.08; Pbarques = 0.26). In Engel Class I patients, spindles occurred with similar incidence both within the non-invasive (P = 0.67) and the intracranial criteria group (P = 0.20). Barques were significantly more frequent in extra-temporal lobe epilepsy defined by either non-invasive (P = 0.01) or intracranial (P = 0.01) criteria. CONCLUSIONS: Both spindles and barques are normal entities of the hippocampal intracranial electroencephalogram. The presence of barques may also signify lack of epileptogenic properties in the hippocampus. SIGNIFICANCE: Understanding that hippocampal spindles and barques do not reflect epileptogenicity is critical for correct interpretation of epilepsy surgery evaluations and appropriate surgical treatment selection.


Assuntos
Ondas Encefálicas/fisiologia , Epilepsias Parciais/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Adulto , Eletrocorticografia , Epilepsias Parciais/cirurgia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Oper Neurosurg (Hagerstown) ; 21(5): 312-323, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34333663

RESUMO

BACKGROUND: Anterior temporal lobectomy (ATL) is the most effective treatment for drug-resistant mesial temporal lobe epilepsy. Extrapial en bloc hippocampal resection facilitates complete removal of the hippocampus. With increasing use of minimally invasive treatments, considering open resection techniques that optimize the integrity of tissue specimens is important both for obtaining the correct histopathological diagnosis and for further study. OBJECTIVE: To describe the operative strategy and clinical outcomes associated with an extrapial approach to hippocampal resection during ATL. METHODS: A database of epilepsy surgeries performed by a single surgeon between October 2011 and February 2019 was reviewed to identify all patients who underwent ATL using an extrapial approach to hippocampal resection. To reduce confounding variables for outcome analysis, subjects with prior resections, tumors, and cavernous malformations were excluded. Seizure outcomes were classified using the Engel scale. RESULTS: The surgical technique is described and illustrated with intraoperative images. A total of 62 patients met inclusion criteria (31 females) for outcome analysis. Patients with most recent follow-up <3 yr (n = 33) and >3 yr (n = 29) exhibited 79% and 52% class I outcomes, respectively. An infarct was observed on postoperative magnetic resonance imaging in 3 patients (1 asymptomatic and 2 temporarily symptomatic). An en bloc specimen in which the subiculum and all hippocampal subfields were preserved was obtained in each case. Examples of innovative research opportunities resulting from this approach are presented. CONCLUSION: Extrapial resection of the hippocampus can be performed safely with seizure freedom and complication rates at least as good as those reported with the use of subpial techniques.


Assuntos
Lobectomia Temporal Anterior , Epilepsia do Lobo Temporal , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Humanos , Convulsões , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA