Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 2): 132284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734353

RESUMO

Liposomes and nanofibers have been implemented as efficacious vehicles for delivering anticancer drugs. With this view, this study explores the antiproliferative efficacy and apoptosis induction in leukemia cancer cells utilizing irinotecan-loaded liposome-embedded nanofibers fabricated from chitosan, a biological source. Specifically, we investigate the effectiveness of poly(ε-caprolactone) (PCL)/chitosan (CS) (core)/irinotecan (CPT)nanofibers (termed PCL-CS10 CPT), PCL/chitosan/irinotecan (core)/PCL/chitosan (shell) nanofibers (termed CS/CPT/PCL/CS), and irinotecan-coloaded liposome-incorporated PCL/chitosan-chitosan nanofibers (termed CPT@Lipo/CS/PCL/CS) in releasing irinotecan in a controlled manner and treating leukemia cancer. The fabricated formulations were characterized utilizing Fourier transform infrared analysis, transmission electron microscopy, scanning electron microscopy, dynamic light scattering, zeta potential, and polydispersity index. Irinotecan was released in a controlled manner from nanofibers filled with liposomes over 30 days. The cell viability of the fabricated nanofibrous materials toward Human umbilical vein endothelial cells (HUVECs) non-cancerous cells after 168 h was >98 % ± 1 %. The CPT@Lipo/CS/PCL/CS nanofibers achieved maximal cytotoxicity of 85 % ± 2.5 % against K562 leukemia cancer cells. The CPT@Lipo/CS/PCL/CS NFs exhibit a three-stage drug release pattern and demonstrate significant in vitro cytotoxicity. These findings indicate the potential of these liposome-incorporated core-shell nanofibers for future cancer therapy.


Assuntos
Apoptose , Proliferação de Células , Quitosana , Irinotecano , Leucemia , Lipossomos , Nanofibras , Quitosana/química , Humanos , Lipossomos/química , Irinotecano/farmacologia , Irinotecano/química , Irinotecano/administração & dosagem , Nanofibras/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Células Endoteliais da Veia Umbilical Humana , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Poliésteres/química , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
J Biochem Mol Toxicol ; 38(1): e23578, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37927152

RESUMO

Lung cancer is one of the most common cancers in men. Although many diagnostic and treatment regimens have been followed in the treatment for lung cancer, increasing mortality rate due to lung cancer is depressing and hence requires alternative plant based therapeutics with with less side-effects. Myrtenol exhibits anti-inflammatory and antioxidant properties. Hence we intended to study the effect of Myrtenol on B(a)P-induced lung cancer. Our study showed that B(a)P lowered hematological count, decreased phagocyte and avidity indices, nitroblue tetrazolium (NBT) reduction, levels of immunoglubulins, antioxidant levels, whereas Myrtenol treatment restored them back to normal levels. On the other hand, xenobiotic and liver dysfunction marker enzymes and pro-inflammatory cytokines were elevated on B(a)P exposure, which retuned back to normal by Myrtenol. This study thus describes the immunomodulatory and antioxidant effects of Myrtenol on B[a]P-induced immune destruction.


Assuntos
Monoterpenos Bicíclicos , Neoplasias Pulmonares , Humanos , Masculino , Camundongos , Animais , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Citocinas/metabolismo , Benzo(a)pireno/toxicidade , Antioxidantes/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Biomarcadores Tumorais/metabolismo , Pulmão/metabolismo
3.
Bioinorg Chem Appl ; 2023: 8892099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920234

RESUMO

Multiple chemodrugs with nanotechnology have proven to be an effective cancer treatment technique. When taken combined, cabazitaxel (CTX) and cisplatin (PT) have more excellent cytotoxic effects than drugs used alone in the chemotherapy of several different cancers. However, several severe side effects are associated with using these chemotherapy drugs in cancer patients. Gold nanomaterials (AuNMs) are promising as drug carriers because of their small diameter, easy surface modifications, good biocompatibility, and strong cell penetration. This work aimed to determine the CTX and PT encapsulated with AuNMs against human glioma U87 cancer cells. The fabrication of the AuNMs achieved a negative surface charge, polydispersity index, and the mean sizes. The combined cytotoxic effect of CTX and PT bound to AuNMs was greater than that of either drug alone when tested on U87 cells. The half inhibitory concentration (IC50) values for free PT were 54.7 µg/mL (at 24 h) and 4.8 g µg/mL (at 72 h). Results acquired from the MTT assay show cell growth decreases time- and concentration-dependent AuNMs, free CTX, free PT, and AuNMs@CTX/PT-induced cytotoxicity and, ultimately, the cell death of U87 cells via apoptosis. The biochemical apoptosis staining techniques investigated the cells' morphological changes of the cells (acridine orange and ethidium bromide (AO-EB) and nuclear staining (DAPI) techniques). The AO-EB and nuclear staining results reveal that the NPs effectively killed cancer cells. Furthermore, the flow cytometry analysis examined the mode of cell death. Therefore, AuNMs@CTX/PT has excellent potential in the cancer therapy of different cancer cells.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37906408

RESUMO

Acute lung injury (ALI) is a clinical condition occurs due to severe systemic inflammatory response for clinical stimulus like pneumonia, sepsis, trauma, aspiration, inhalation of toxic gases, and pancreatitis. Disruption of alveolar barriers, activation of macrophages, infiltration of neutrophils, and proinflammatory cytokines are the vital events occurs during ALI. The drugs which inhibit these inflammatory response can protect lungs from inflammatory insults. In this study, we examined the potency of phytochemical coronarin, a diterpene which have been proven to possess anti-inflammatory, antioxidant, antiangiogenic, and antitumor activities. Healthy BALB/c mice were induced to acute lung injury with intra-tracheal administration of LPS and then treated with 5 and 10 mg/kg concentration of coronarin. The wet/dry lung weight of mice were estimated to assess the induction of pulmonary edema. BALF fluid was analyzed for protein concentrations and immune cells count. Myeloperoxidase activity and levels of chemokines MCP-2 and MIP-2, iNOS, COX-2, and PGE-2 were quantified to assess the immunomodulatory effect of coronarin against LPS-induced ALI. The levels of proinflammatory cytokines was measured to examine the anti-inflammatory property of coronarin, and it was confirmed with histopathological analysis of the lung tissue. Murine RAW 264.7 cells were utilized for the in vitro analysis. Cell cytoxicity and cytoprotective property of coronarin was assessed with MTT assay in LPS-treated Murine RAW 264.7. The anti-inflammatory property of coronarin was further confirmed in in vitro condition by estimating the levels of pro-inflammatory cytokines in coronarin-treated and untreated LPS-induced cells. Overall, our in vivo and in vitro results confirm coronarin significantly inhibited the infiltration of neutrophils prevented immunodulatory activity and synthesis of proinflammatory cytokines and alleviated the acute lung injury induced by LPS. Coronarin is a potent anti-inflammatory drug which can be subjected to further research to be prescribed as drug for ALI.

5.
Saudi Pharm J ; 30(4): 347-358, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35527823

RESUMO

In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1ß. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.

6.
IET Nanobiotechnol ; 15(1): 79-89, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34694731

RESUMO

In this study, ellagic acid (ELA), a skin anticancer drug, is capped on the surface(s) of functionalised graphene oxide (GO) nano-sheets through electrostatic and π-π staking interactions. The prepared ELA-GO nanocomposite have been thoroughly characterised by using eight techniques: Fourier-transform infrared spectroscopy (FTIR), zeta potential, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM) topographic imaging, transmission electron microscopy (TEM), and surface morphology via scanning electron microscopy (SEM). Furthermore, ELA drug loading and release behaviours from ELA-GO nanocomposite were studied. The ELA-GO nanocomposite has a uniform size distribution averaging 88 nm and high drug loading capacity of 30 wt.%. The in vitro drug release behaviour of ELA from the nanocomposite was investigated by UV-Vis spectrometry at a wavelength of λmax 257 nm. The data confirmed prolonged ELA release over 5000 min at physiological pH (7.4). Finally, the IC50 of this ELA-GO nanocomposite was found to be 6.16 µg/ml against B16 cell line; ELA and GO did not show any cytotoxic effects up to 50 µg/ml on the same cell lines.


Assuntos
Anti-Infecciosos , Grafite , Nanocompostos , Ácido Elágico
7.
Int J Nanomedicine ; 16: 6205-6216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526768

RESUMO

INTRODUCTION: Traditional cancer therapies may have incomplete eradication of cancer or destroy the normal cells. Nanotechnology solves the demerit by a guide in surgical resection of tumors, targeted chemotherapies, selective to cancerous cells, etc. This new technology can reduce the risk to the patient and automatically increased the probability of survival. Toward this goal, novel iron oxide nanoparticles (IONPs) coupled with leukemia anti-cancer drug were prepared and assessed. METHODS: The IONPs were prepared by the co-precipitation method using Fe+3/Fe+2ratio of 2:1. These IONPs were used as a carrier for chlorambucil (Chloramb), where the IONPs serve as the cores and chitosan (CS) as a polymeric shell to form Chloramb-CS-IONPs. The products were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) analysis, Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) analyses, and thermal gravimetric analysis (TGA). RESULTS: The as-prepared IONPs were found to be magnetite (Fe3O4) and were coated by the CS polymer/Chloramb drug for the formation of the Chloramb-CS-IONPs. The average size for CS-IONPs and Chloramb-CS-IONPs nanocomposite was found to be 15 nm, with a drug loading of 19% for the letter. The release of the drug from the nanocomposite was found to be of a controlled-release manner with around 89.9% of the drug was released within about 5000 min and governed by the pseudo-second order. The in vitro cytotoxicity studies of CS-IONPs and Chloramb-CS-IONPs nanocomposite were tested on the normal fibroblast cell lines (3T3) and leukemia cancer cell lines (WEHI). Chloramb in Chloramb-CS-IONPs nanocomposite was found to be more efficient compared to its free form. CONCLUSION: This work shows that Chloramb-CS-IONPs nanocomposite is a promising candidate for magnetically targeted drug delivery for leukemia anti-cancer agents.


Assuntos
Quitosana , Leucemia , Nanopartículas de Magnetita , Clorambucila , Sistemas de Liberação de Medicamentos , Humanos , Leucemia/tratamento farmacológico , Nanopartículas Magnéticas de Óxido de Ferro , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Eur J Pharm Sci ; 133: 167-182, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902654

RESUMO

Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-ß-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-ß-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-ß-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 µg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Antialérgicos/administração & dosagem , Benzoquinonas/administração & dosagem , Sistemas de Liberação de Medicamentos , Animais , Antialérgicos/química , Benzoquinonas/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Suco Gástrico/química , Histamina/metabolismo , Interleucina-4/metabolismo , Secreções Intestinais/química , Ratos , Fator de Necrose Tumoral alfa/metabolismo
9.
Biomed Res Int ; 2014: 651831, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24900976

RESUMO

Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.


Assuntos
Anti-Infecciosos/química , Preparações de Ação Retardada/química , Compostos Férricos/química , Nanocompostos/química , Nistatina/química , Células 3T3 , Animais , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Preparações de Ação Retardada/farmacologia , Compostos Férricos/farmacologia , Fibroblastos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Camundongos , Nistatina/farmacologia , Termogravimetria
10.
ScientificWorldJournal ; 2014: 972501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24895684

RESUMO

The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Mercaptopurina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Leucemia , Mercaptopurina/química , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química
11.
ScientificWorldJournal ; 2014: 104246, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782658

RESUMO

We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).


Assuntos
Alumínio/química , Sistemas de Liberação de Medicamentos , Hidróxidos/química , Levodopa/administração & dosagem , Nanocompostos/química , Polissorbatos/química , Zinco/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Cinética , Nanocompostos/ultraestrutura , Células PC12 , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Difração de Raios X
12.
ScientificWorldJournal ; 2014: 416354, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737969

RESUMO

The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.


Assuntos
Preparações de Ação Retardada/química , Ácido Gálico/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Polietilenoglicóis/química , Álcool de Polivinil/química , Adsorção , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Preparações de Ação Retardada/toxicidade , Difusão , Ácido Gálico/análise , Ácido Gálico/toxicidade , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/toxicidade , Teste de Materiais , Nanocápsulas/administração & dosagem , Nanocápsulas/toxicidade , Polietilenoglicóis/toxicidade , Álcool de Polivinil/toxicidade
13.
Int J Mol Sci ; 15(4): 5916-27, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24722565

RESUMO

Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.


Assuntos
Alumínio/farmacologia , Levodopa/farmacologia , Nanocompostos/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Zinco/farmacologia , Alumínio/efeitos adversos , Alumínio/química , Animais , Linhagem Celular , Sobrevivência Celular , Ácido Homovanílico/metabolismo , Hidróxidos , Levodopa/efeitos adversos , Levodopa/metabolismo , Nanocompostos/efeitos adversos , Nanoconjugados/efeitos adversos , Nanoconjugados/uso terapêutico , Nanopartículas/efeitos adversos , Nanopartículas/uso terapêutico , Células PC12 , Ratos , Zinco/efeitos adversos , Zinco/química
14.
J Biomater Appl ; 29(2): 186-198, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24445774

RESUMO

Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg-CS-MNP and Arg-PEG-MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg-CS-MNP and Arg-PEG-MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV-vis measurements, which yielded values of 5.5% and 11% for the Arg-CS-MNP and Arg-PEG-MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg-CS-MNP and Arg-PEG-MNP nanocomposites reduced the cancer cell viability with IC50 values of 48.6 and 42.6 µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells.

15.
Drug Des Devel Ther ; 7: 1365-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255593

RESUMO

We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.


Assuntos
Ácido Aminossalicílico/administração & dosagem , Antituberculosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanocompostos , Células 3T3 , Alumínio/química , Ácido Aminossalicílico/química , Animais , Antituberculosos/química , Antituberculosos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Fatores de Tempo , Difração de Raios X , Zinco/química
16.
Int J Nanomedicine ; 8: 4115-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204141

RESUMO

The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos Férricos/farmacologia , Nanopartículas Metálicas/química , Níquel/farmacologia , Compostos de Zinco/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Citocromos c/análise , Citocromos c/metabolismo , Compostos Férricos/química , Glutationa/análise , Glutationa/metabolismo , Humanos , Malondialdeído/análise , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Níquel/química , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/metabolismo , Compostos de Zinco/química , Proteína X Associada a bcl-2/análise , Proteína X Associada a bcl-2/metabolismo
17.
Molecules ; 18(9): 10580-98, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23999729

RESUMO

Drug delivery systems are designed to achieve drug therapeutic index and enhance the efficacy of controlled drug release targeting with specificity and selectivity by successful delivery of therapeutic agents at the desired sites without affecting the non-diseased neighbouring cells or tissues. In this research, we developed and demonstrated a bio-based calcium carbonate nanocrystals carrier that can be loaded with anticancer drug and selectively deliver it to cancer cells with high specificity by achieving the effective osteosarcoma cancer cell death without inducing specific toxicity. The results showed pH sensitivity of the controlled release characteristics of the drug at normal physiological pH 7.4 with approximately 80% released within 1,200 min but when exposed pH 4.8 the corresponding 80% was released in 50 min. This study showed that the DOX-loaded CaCO3 nanocrystals have promising applications in delivery of anticancer drugs.


Assuntos
Antibióticos Antineoplásicos/química , Neoplasias Ósseas/tratamento farmacológico , Doxorrubicina/química , Osteossarcoma/tratamento farmacológico , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carbonato de Cálcio/química , Caspases/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Preparações de Ação Retardada/farmacologia , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura
18.
Int J Nanomedicine ; 8: 2497-508, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23885175

RESUMO

In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 µg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Compostos Férricos/farmacologia , Nanopartículas Metálicas/química , Níquel/farmacologia , Compostos de Zinco/farmacologia , Antineoplásicos/química , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Compostos Férricos/química , Humanos , Níquel/química , Tamanho da Partícula , Espectrofotometria Infravermelho , Estatísticas não Paramétricas , Difração de Raios X , Compostos de Zinco/química
19.
Int J Nanomedicine ; 8: 1975-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737666

RESUMO

In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: "PANE" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and "PAND" (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 µg/mL for PANE and 36.0 µg/mL for PAND for MCF-7 cells, and 19.8 µg/mL for PANE and 30.3 µg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells.


Assuntos
Antineoplásicos/farmacocinética , Hidroxibenzoatos/farmacocinética , Nanocompostos/química , Alumínio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Células HeLa , Humanos , Hidróxidos/química , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Troca Iônica , Cinética , Células MCF-7 , Magnésio/química , Difração de Pó , Propriedades de Superfície
20.
Drug Des Devel Ther ; 7: 25-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23345969

RESUMO

BACKGROUND: The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors. METHODS: The hippuric acid nanocomposite (HAN) was prepared by the direct reaction of a HA solution with an aqueous suspension of ZnO. RESULTS: The basal spacing of the nanocomposite was 21.3 Å, which is average of four harmonics at 2θ = 8.32°, 12.50°, 16.68°, and 20.84°. This result indicates that the hippurate anion was successfully intercalated into the interlayer space of ZLH. The combinations of HAN with chemotherapy (drugs) has inhibited the cell growth of the MDA-MB231, MCF-7, and Caco2 cancer cells when compared to drugs alone. An IC(50) value for the combination of HAN with doxorubicin toward MCF-7 is 0.19 ± 0.15 µg/mL and toward MDA-MB231 is 0.13 ± 0.10 µg/mL. Similarly, the IC(50) for the combination of HAN with oxaliplatin toward Caco2 is 0.24 ± 0.11 µg/mL. In the antiproliferative results, the equal combination of HAN (0.5 µg/mL) with doxorubicin (0.5 µg/mL) has reduced the cell proliferation in MCF-7 and MDA-MB-231 cells into 37.3% and 17.6%, respectively after 24 hours. Similarly, the antiproliferation percentage for equal combination HAN with oxaliplatin (5.00 µg/mL) toward Caco2 is 72.7% after 24 hours. CONCLUSION: The resulting combination HAN with drugs has exhibited higher inhibition in cells growth in all cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Hipuratos/farmacologia , Compostos Organoplatínicos/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Hipuratos/química , Humanos , Concentração Inibidora 50 , Células MCF-7 , Nanocompostos , Compostos Organoplatínicos/administração & dosagem , Oxaliplatina , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA