Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 23(12): 1765-1782, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36069343

RESUMO

Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Beta vulgaris , Cistos , Tylenchoidea , Animais , Arabidopsis/metabolismo , Beta vulgaris/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/genética , Tylenchoidea/metabolismo , Açúcares/metabolismo , Raízes de Plantas/parasitologia , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases
2.
New Phytol ; 229(1): 563-574, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569394

RESUMO

Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.


Assuntos
Nematoides , Tylenchoidea , Animais , Retículo Endoplasmático , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Peptídeos , Doenças das Plantas , Raízes de Plantas
3.
Mol Plant Pathol ; 21(9): 1227-1239, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686295

RESUMO

While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.


Assuntos
Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Glycine max/parasitologia
4.
New Phytol ; 219(2): 697-713, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29726613

RESUMO

Cyst nematodes deliver effector proteins into host cells to manipulate cellular processes and establish a metabolically hyperactive feeding site. The novel 30D08 effector protein is produced in the dorsal gland of parasitic juveniles, but its function has remained unknown. We demonstrate that expression of 30D08 contributes to nematode parasitism, the protein is packaged into secretory granules and it is targeted to the plant nucleus where it interacts with SMU2 (homolog of suppressor of mec-8 and unc-52 2), an auxiliary spliceosomal protein. We show that SMU2 is expressed in feeding sites and an smu2 mutant is less susceptible to nematode infection. In Arabidopsis expressing 30D08 under the SMU2 promoter, several genes were found to be alternatively spliced and the most abundant functional classes represented among differentially expressed genes were involved in RNA processing, transcription and binding, as well as in development, and hormone and secondary metabolism, representing key cellular processes known to be important for feeding site formation. In conclusion, we demonstrated that the 30D08 effector is secreted from the nematode and targeted to the plant nucleus where its interaction with a host auxiliary spliceosomal protein may alter the pre-mRNA splicing and expression of a subset of genes important for feeding site formation.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , Núcleo Celular/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica de Plantas , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Tylenchoidea/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Genes de Plantas , Proteínas de Helminto/química , Estágios do Ciclo de Vida , Sinais de Localização Nuclear , Parasitos/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Plântula/metabolismo , Tylenchoidea/crescimento & desenvolvimento , Regulação para Cima
5.
Mol Plant Pathol ; 17(6): 832-44, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575318

RESUMO

Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 ß subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii.


Assuntos
Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Beta vulgaris , Citoplasma/metabolismo , DNA Bacteriano/genética , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Helminto/química , Hibridização In Situ , Mutagênese Insercional/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas , Ligação Proteica , Reprodutibilidade dos Testes , Alinhamento de Sequência
6.
Phytopathology ; 105(10): 1362-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25871857

RESUMO

Heterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H. glycines produces an arsenal of effector proteins in the secretory esophageal gland cells. More than 60 H. glycines candidate effectors were identified in previous gland-cell-mining projects. However, it is likely that additional candidate effectors remained unidentified. With the goal of identifying remaining H. glycines candidate effectors, we constructed and sequenced a large gland cell cDNA library resulting in 11,814 expressed sequence tags. After bioinformatic filtering for candidate effectors using a number of criteria, in situ hybridizations were performed in H. glycines whole-mount specimens to identify candidate effectors whose mRNA exclusively accumulated in the esophageal gland cells, which is a hallmark of many nematode effectors. This approach resulted in the identification of 18 new H. glycines esophageal gland-cell-specific candidate effectors. Of these candidate effectors, 11 sequences were pioneers without similarities to known proteins while 7 sequences had similarities to functionally annotated proteins in databases. These putative homologies provided the bases for the development of hypotheses about potential functions in the parasitism process.


Assuntos
Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Sequência de Bases , Biblioteca Gênica , Células Gigantes , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Raízes de Plantas/parasitologia , Análise de Sequência de DNA
7.
Plant Cell ; 27(3): 891-907, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25715285

RESUMO

Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/parasitologia , Núcleo Celular/metabolismo , Interações Hospedeiro-Parasita , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/parasitologia , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Sinais de Localização Nuclear , Fosforilação , Fosfosserina/metabolismo , Doenças das Plantas/parasitologia , Proteínas Quinases/metabolismo , Transporte Proteico , Regulação para Cima
8.
Phytopathology ; 104(8): 879-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25014776

RESUMO

Sedentary plant-parasitic nematodes engage in complex interactions with their host plants by secreting effector proteins. Some effectors of both root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera and Globodera spp.) mimic plant ligand proteins. Most prominently, cyst nematodes secrete effectors that mimic plant CLAVATA3/ESR-related (CLE) ligand proteins. However, only cyst nematodes have been shown to secrete such effectors and to utilize CLE ligand mimicry in their interactions with host plants. Here, we document the presence of ligand-like motifs in bona fide root-knot nematode effectors that are most similar to CLE peptides from plants and cyst nematodes. We have identified multiple tandem CLE-like motifs conserved within the previously identified Meloidogyne avirulence protein (MAP) family that are secreted from root-knot nematodes and have been shown to function in planta. By searching all 12 MAP family members from multiple Meloidogyne spp., we identified 43 repetitive CLE-like motifs composing 14 unique variants. At least one CLE-like motif was conserved in each MAP family member. Furthermore, we documented the presence of other conserved sequences that resemble the variable domains described in Heterodera and Globodera CLE effectors. These findings document that root-knot nematodes appear to use CLE ligand mimicry and point toward a common host node targeted by two evolutionarily diverse groups of nematodes. As a consequence, it is likely that CLE signaling pathways are important in other phytonematode pathosystems as well.


Assuntos
Motivos de Aminoácidos , Proteínas de Helminto/química , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Helminto/genética , Hibridização In Situ , Ligantes , Dados de Sequência Molecular , Família Multigênica , RNA Mensageiro/genética , Alinhamento de Sequência , Transdução de Sinais , Tylenchoidea/química , Tylenchoidea/genética
9.
New Phytol ; 199(4): 879-894, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23691972

RESUMO

Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda.


Assuntos
Proteínas de Helminto/metabolismo , Nematoides/fisiologia , Parasitos/metabolismo , Animais , Interações Hospedeiro-Parasita , Células Vegetais/metabolismo , Células Vegetais/parasitologia
10.
J Exp Bot ; 63(10): 3683-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442414

RESUMO

Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode, Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02 protein interacted with a specific (AT4G16260) host plant ß-1,3-endoglucanase in both yeast and plant cells, possibly to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the nematode and peak expression of At4g16260 in plant roots coincided at around 3-5 d after root infection by the nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were reduced in nematode susceptibility, suggesting a potential role of host ß-1,3-endoglucanase in the defence response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective results suggest that, as with other pathogens, active suppression of host defence is a critical component for successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/parasitologia , Celulase/metabolismo , Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Tylenchoidea/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Celulase/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ligação Proteica , Tylenchoidea/genética , Tylenchoidea/crescimento & desenvolvimento
11.
Methods Mol Biol ; 712: 89-107, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21359803

RESUMO

Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.


Assuntos
Biblioteca Gênica , Interações Hospedeiro-Parasita/genética , Nematoides/citologia , Nematoides/genética , Nematoides/patogenicidade , Raízes de Plantas/parasitologia , Animais , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/isolamento & purificação
12.
Plant J ; 65(3): 430-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21265896

RESUMO

Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR (CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Here we demonstrate that CLV2 and CORYNE (CRN), members of the receptor kinase family, are required for nematode CLE signaling. Exogenous peptide assays and overexpression of nematode CLEs in Arabidopsis demonstrated that CLV2 and CRN are required for perception of nematode CLEs. In addition, promoter-reporter assays showed that both receptors are expressed in nematode-induced syncytia. Lastly, infection assays with receptor mutants revealed a decrease in both nematode infection and syncytium size. Taken together, our results indicate that perception of nematode CLEs by CLV2 and CRN is not only required for successful nematode infection but is also involved in the formation and/or maintenance of nematode-induced syncytia.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Nematoides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Nematoides/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais
13.
Mol Plant Pathol ; 12(2): 177-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21199567

RESUMO

In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 µm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 µm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.


Assuntos
Arabidopsis/parasitologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Mimetismo Molecular , Peptídeos/metabolismo , Tylenchoidea/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Helminto/química , Interações Hospedeiro-Parasita/efeitos dos fármacos , Ligantes , Mimetismo Molecular/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/parasitologia , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
14.
Plant Physiol ; 155(2): 866-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21156858

RESUMO

Plant-parasitic cyst nematodes penetrate plant roots and transform cells near the vasculature into specialized feeding sites called syncytia. Syncytia form by incorporating neighboring cells into a single fused cell by cell wall dissolution. This process is initiated via injection of esophageal gland cell effector proteins from the nematode stylet into the host cell. Once inside the cell, these proteins may interact with host proteins that regulate the phytohormone auxin, as cellular concentrations of auxin increase in developing syncytia. Soybean cyst nematode (Heterodera glycines) Hg19C07 is a novel effector protein expressed specifically in the dorsal gland cell during nematode parasitism. Here, we describe its ortholog in the beet cyst nematode (Heterodera schachtii), Hs19C07. We demonstrate that Hs19C07 interacts with the Arabidopsis (Arabidopsis thaliana) auxin influx transporter LAX3. LAX3 is expressed in cells overlying lateral root primordia, providing auxin signaling that triggers the expression of cell wall-modifying enzymes, allowing lateral roots to emerge. We found that LAX3 and polygalacturonase, a LAX3-induced cell wall-modifying enzyme, are expressed in the developing syncytium and in cells to be incorporated into the syncytium. We observed no decrease in H. schachtii infectivity in aux1 and lax3 single mutants. However, a decrease was observed in both the aux1lax3 double mutant and the aux1lax1lax2lax3 quadruple mutant. In addition, ectopic expression of 19C07 was found to speed up lateral root emergence. We propose that Hs19C07 most likely increases LAX3-mediated auxin influx and may provide a mechanism for cyst nematodes to modulate auxin flow into root cells, stimulating cell wall hydrolysis for syncytium development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/parasitologia , Proteínas de Helminto/fisiologia , Interações Hospedeiro-Parasita , Proteínas de Membrana Transportadoras/metabolismo , Nematoides/fisiologia , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/parasitologia , Regulação da Expressão Gênica de Plantas , Células Gigantes/parasitologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Poligalacturonase/genética , Poligalacturonase/metabolismo , RNA de Plantas/genética
15.
New Phytol ; 187(4): 1003-1017, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20497349

RESUMO

*Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3/ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. *The site of action and mechanism of delivery of CLE effectors to host plant cells by the nematode, however, have not been established. In this study, immunologic, genetic and biochemical approaches were used to reveal the localization and site of action of H. glycines-secreted CLE proteins in planta. *We present evidence indicating that the nematode CLE propeptides are delivered to the cytoplasm of syncytial cells, but ultimately function in the apoplast, consistent with their proposed role as ligand mimics of plant CLE peptides. We determined that the nematode 12-amino-acid CLE motif peptide is not sufficient for biological activity in vivo, pointing to an important role for sequences upstream of the CLE motif in function. *Genetic and biochemical analysis confirmed the requirement of the variable domain in planta for host-specific recognition and revealed a novel role in trafficking cytoplasmically delivered CLEs to the apoplast in order to function as ligand mimics.


Assuntos
Citoplasma/química , Interações Hospedeiro-Patógeno , Nematoides/patogenicidade , Peptídeos/metabolismo , Proteínas de Plantas , Animais , Nematoides/metabolismo , Peptídeos/análise , Peptídeos/química , Doenças das Plantas , Estrutura Terciária de Proteína , Glycine max/parasitologia
16.
J Exp Bot ; 61(1): 235-48, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19887499

RESUMO

Nematode parasitism genes encode secreted effector proteins that play a role in host infection. A homologue of the expressed Hg4F01 gene of the root-parasitic soybean cyst nematode, Heterodera glycines, encoding an annexin-like effector, was isolated in the related Heterodera schachtii to facilitate use of Arabidopsis thaliana as a model host. Hs4F01 and its protein product were exclusively expressed within the dorsal oesophageal gland secretory cell in the parasitic stages of H. schachtii. Hs4F01 had a 41% predicted amino acid sequence identity to the nex-1 annexin of C. elegans and 33% identity to annexin-1 (annAt1) of Arabidopsis, it contained four conserved domains typical of the annexin family of calcium and phospholipid binding proteins, and it had a predicted signal peptide for secretion that was present in nematode annexins of only Heterodera spp. Constitutive expression of Hs4F01 in wild-type Arabidopsis promoted hyper-susceptibility to H. schachtii infection. Complementation of an AnnAt1 mutant by constitutive expression of Hs4F01 reverted mutant sensitivity to 75 mM NaCl, suggesting a similar function of the Hs4F01 annexin-like effector in the stress response by plant cells. Yeast two-hybrid assays confirmed a specific interaction between Hs4F01 and an Arabidopsis oxidoreductase member of the 2OG-Fe(II) oxygenase family, a type of plant enzyme demonstrated to promote susceptibility to oomycete pathogens. RNA interference assays that expressed double-stranded RNA complementary to Hs4F01 in transgenic Arabidopsis specifically decreased parasitic nematode Hs4F01 transcript levels and significantly reduced nematode infection levels. The combined data suggest that nematode secretion of an Hs4F01 annexin-like effector into host root cells may mimic plant annexin function during the parasitic interaction.


Assuntos
Anexinas/metabolismo , Arabidopsis/parasitologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Nematoides/metabolismo , Sequência de Aminoácidos , Animais , Anexinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Helmintos/metabolismo , Genes de Helmintos , Teste de Complementação Genética , Genoma/genética , Proteínas de Helminto/química , Dados de Sequência Molecular , Mutação/genética , Nematoides/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Interferência de RNA , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
17.
Plant Physiol ; 152(2): 968-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19965964

RESUMO

Cyst nematodes are sedentary plant parasites that cause dramatic cellular changes in the plant root to form feeding cells, so-called syncytia. 10A06 is a cyst nematode secretory protein that is most likely secreted as an effector into the developing syncytia during early plant parasitism. A homolog of the uncharacterized soybean cyst nematode (Heterodera glycines), 10A06 gene was cloned from the sugar beet cyst nematode (Heterodera schachtii), which is able to infect Arabidopsis (Arabidopsis thaliana). Constitutive expression of 10A06 in Arabidopsis affected plant morphology and increased susceptibility to H. schachtii as well as to other plant pathogens. Using yeast two-hybrid assays, we identified Spermidine Synthase2 (SPDS2), a key enzyme involved in polyamine biosynthesis, as a specific 10A06 interactor. In support of this protein-protein interaction, transgenic plants expressing 10A06 exhibited elevated SPDS2 mRNA abundance, significantly higher spermidine content, and increased polyamine oxidase (PAO) activity. Furthermore, the SPDS2 promoter was strongly activated in the nematode-induced syncytia, and transgenic plants overexpressing SPDS2 showed enhanced plant susceptibility to H. schachtii. In addition, in planta expression of 10A06 or SPDS2 increased mRNA abundance of a set of antioxidant genes upon nematode infection. These data lend strong support to a model in which the cyst nematode effector 10A06 exerts its function through the interaction with SPDS2, thereby increasing spermidine content and subsequently PAO activity. Increasing PAO activity results in stimulating the induction of the cellular antioxidant machinery in syncytia. Furthermore, we observed an apparent disruption of salicylic acid defense signaling as a function of 10A06. Most likely, increased antioxidant protection and interruption of salicylic acid signaling are key aspects of 10A06 function in addition to other physiological and morphological changes caused by altered polyamines, which are potent plant signaling molecules.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Interações Hospedeiro-Parasita , Espermidina Sintase/metabolismo , Tylenchoidea/genética , Animais , Antioxidantes/metabolismo , Arabidopsis/parasitologia , Clonagem Molecular , DNA de Helmintos/genética , Regulação da Expressão Gênica de Plantas , Genes de Helmintos , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia , Ácido Salicílico/metabolismo , Tylenchoidea/metabolismo , Poliamina Oxidase
18.
BMC Genomics ; 10: 58, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19183474

RESUMO

BACKGROUND: Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. RESULTS: We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. CONCLUSION: We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H. glycines genes to a pool of 788 most promising candidate genes (including known parasitism genes) and documented their expression profiles. Using our approach to pre-select genes likely involved in parasitism now allows detailed functional analyses in a manner not feasible for larger numbers of genes. The generation of the candidate pool described here is an important enabling advance because it will significantly facilitate the unraveling of fascinating plant-animal interactions and deliver knowledge that can be transferred to other pathogen-host systems. Ultimately, the exploration of true parasitism genes verified from the gene pool delineated here will identify weaknesses in the nematode life cycle that can be exploited by novel anti-nematode efforts.


Assuntos
Interações Hospedeiro-Parasita/genética , Transcrição Gênica , Tylenchoidea/genética , Animais , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genes de Helmintos , Genoma Helmíntico , Histona Desacetilases/genética , Glycine max/parasitologia
19.
J Exp Bot ; 60(1): 315-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19015219

RESUMO

Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.


Assuntos
Arabidopsis/genética , Regulação para Baixo , Proteínas de Helminto/genética , Nematoides/genética , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Interferência de RNA , Animais , Arabidopsis/parasitologia , Feminino , Expressão Gênica , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Masculino , Nematoides/fisiologia
20.
Plant Cell ; 20(11): 3080-93, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19001564

RESUMO

Plant-parasitic cyst nematodes secrete a complex of cell wall-digesting enzymes, which aid in root penetration and migration. The soybean cyst nematode Heterodera glycines also produces a cellulose binding protein (Hg CBP) secretory protein. To determine the function of CBP, an orthologous cDNA clone (Hs CBP) was isolated from the sugar beet cyst nematode Heterodera schachtii, which is able to infect Arabidopsis thaliana. CBP is expressed only in the early phases of feeding cell formation and not during the migratory phase. Transgenic Arabidopsis expressing Hs CBP developed longer roots and exhibited enhanced susceptibility to H. schachtii. A yeast two-hybrid screen identified Arabidopsis pectin methylesterase protein 3 (PME3) as strongly and specifically interacting with Hs CBP. Transgenic plants overexpressing PME3 also produced longer roots and exhibited increased susceptibility to H. schachtii, while a pme3 knockout mutant showed opposite phenotypes. Moreover, CBP overexpression increases PME3 activity in planta. Localization studies support the mode of action of PME3 as a cell wall-modifying enzyme. Expression of CBP in the pme3 knockout mutant revealed that PME3 is required but not the sole mechanism for CBP overexpression phenotype. These data indicate that CBP directly interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/parasitologia , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Tylenchoidea/metabolismo , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Complementar/genética , Genes de Helmintos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , RNA de Helmintos/genética , RNA de Plantas/genética , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA