Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1486: 411-435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27844438

RESUMO

Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.


Assuntos
Microtúbulos/química , Pinças Ópticas , Óptica e Fotônica/métodos , Citoesqueleto/química , Citoesqueleto/metabolismo , Dineínas/química , Dineínas/isolamento & purificação , Dineínas/metabolismo , Microscopia/métodos , Microtúbulos/metabolismo
2.
Biophys J ; 111(9): 2039-2050, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806284

RESUMO

The quantification of cellular mechanical properties is of tremendous interest in biology and medicine. Recent microfluidic technologies that infer cellular mechanical properties based on analysis of cellular deformations during microchannel traversal have dramatically improved throughput over traditional single-cell rheological tools, yet the extraction of material parameters from these measurements remains quite complex due to challenges such as confinement by channel walls and the domination of complex inertial forces. Here, we describe a simple microfluidic platform that uses hydrodynamic forces at low Reynolds number and low confinement to elongate single cells near the stagnation point of a planar extensional flow. In tandem, we present, to our knowledge, a novel analytical framework that enables determination of cellular viscoelastic properties (stiffness and fluidity) from these measurements. We validated our system and analysis by measuring the stiffness of cross-linked dextran microparticles, which yielded reasonable agreement with previously reported values and our micropipette aspiration measurements. We then measured viscoelastic properties of 3T3 fibroblasts and glioblastoma tumor initiating cells. Our system captures the expected changes in elastic modulus induced in 3T3 fibroblasts and tumor initiating cells in response to agents that soften (cytochalasin D) or stiffen (paraformaldehyde) the cytoskeleton. The simplicity of the device coupled with our analytical model allows straightforward measurement of the viscoelastic properties of cells and soft, spherical objects.


Assuntos
Elasticidade , Dispositivos Lab-On-A-Chip , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Glioblastoma/patologia , Camundongos , Células NIH 3T3 , Viscosidade
3.
Cell ; 165(1): 100-110, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26924577

RESUMO

The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos/fisiologia , Animais , Fenômenos Biomecânicos , Degranulação Celular , Linhagem Celular Tumoral , Camundongos , Perforina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
4.
Bull Cancer ; 90(10): 910-6, 2003 Oct.
Artigo em Francês | MEDLINE | ID: mdl-14706920

RESUMO

The network of cancer care units in Lorraine area (Oncolor) developed management training for people working in chemotherapy units, and cytotoxic drug preparation. The programme was framed both for staff of executives (pharmacists), and technicians. Firstly, comparison between practices and theoretical recommendations lead to the elaboration of standardized operating procedures. Secondly, we elaborated a specific handbook for this education programme. A series of four-days independent sessions were organized for pharmacists and technicians. Each session combined theoretical and technical teaching for preparing antineoplastic drugs. Participants passing a successful final examination received a certificate from the Oncolor's network attesting their capacity to manage a chemotherapy unit. Four sessions were performed, with 35 participants. Only 31 passed at final examination. This preliminary experience will be enlarged to all members of the network and regularly brought up to date.


Assuntos
Antineoplásicos/química , Currículo , Composição de Medicamentos , Educação Continuada em Farmácia/organização & administração , Técnicos em Farmácia/educação , Composição de Medicamentos/normas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA