Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 171(1): 92-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102184

RESUMO

BACKGROUND AND PURPOSE: Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS: C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC50 of 0.36 and 0.11 µmol·L(-1) respectively. C1 inhibited I(KACh)(IC50 of 1.9 µmol·L(-1)) and the Na(v)1.5 sodium channel current (IC50s of 3 and 1 µmol·L(-1) for peak and late components respectively). C1 (1 µmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS: C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estilbenos/farmacologia , Potenciais de Ação , Adulto , Idoso , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Resveratrol , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção
2.
Am J Physiol Heart Circ Physiol ; 298(5): H1577-87, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20207815

RESUMO

Protracted QT interval (QTI) adaptation to abrupt heart rate (HR) changes has been identified as a clinical arrhythmic risk marker. This study investigates the ionic mechanisms of QTI rate adaptation and its relationship to arrhythmic risk. Computer simulations and experimental recordings in human and canine ventricular tissue were used to investigate the ionic basis of QTI and action potential duration (APD) to abrupt changes in HR with a protocol commonly used in clinical studies. The time for 90% QTI adaptation is 3.5 min in simulations, in agreement with experimental and clinical data in humans. APD adaptation follows similar dynamics, being faster in mid-myocardial cells (2.5 min) than in endocardial and epicardial cells (3.5 min). Both QTI and APD adapt in two phases following an abrupt HR change: a fast initial phase with time constant < 30 s, mainly related to L-type calcium and slow-delayed rectifier potassium current, and a second slow phase of >2 min driven by intracellular sodium concentration ([Na(+)](i)) dynamics. Alterations in [Na(+)](i) dynamics due to Na(+)/K(+) pump current inhibition result in protracted rate adaptation and are associated with increased proarrhythmic risk, as indicated by action potential triangulation and faster L-type calcium current recovery from inactivation, leading to the formation of early afterdepolarizations. In conclusion, this study suggests that protracted QTI adaptation could be an indicator of altered [Na(+)](i) dynamics following Na(+)/K(+) pump inhibition as it occurs in patients with ischemia or heart failure. An increased risk of cardiac arrhythmias in patients with protracted rate adaptation may be due to an increased risk of early after-depolarization formation.


Assuntos
Adaptação Fisiológica/fisiologia , Arritmias Cardíacas/fisiopatologia , Frequência Cardíaca/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/fisiologia , Cães , Eletrocardiografia , Ventrículos do Coração , Humanos , Canais Iônicos/fisiologia , Cinética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Valor Preditivo dos Testes , Medição de Risco , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA