Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 30(3): 525-530, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735042

RESUMO

Multidrug resistance (MDR) is a significant challenge in the treatment of many types of cancers as membrane-associated transporters actively pump drugs out of the cell, limiting therapeutic efficacy. While nanoparticle (NP)-based therapeutics have emerged as a mechanism for overcoming MDR, they often rely on the delivery of multiple anticancer drugs, nucleic acid hybrids, or MDR pump inhibitors. The effectiveness of these strategies, however, can be limited by their off-target toxicity or the need for genetic transfection. In this paper, we describe a NP-peptide-drug bioconjugate that achieves significant cell killing in MDR-positive cancer cells without the need for additional drugs. We use a quantum dot (QD) as a central scaffold to append two species of peptide, a cell-uptake peptide to facilitate endocytic internalization and a peptide-drug conjugate that is susceptible to cleavage by esterases found within the endocytic pathway. This approach relies on spatiotemporal control over drug release, where endosomes traffic drug away from membrane-resident pumps and release it closer to the nucleus. Cellular internalization studies showed high uptake of the NP-drug complex and nuclear localization of the drug after 48 h in MDR-positive cells. Additionally, cellular proliferation assays demonstrated a 40% decrease in cell viability for the NP-drug bioconjugate compared to free drug, confirming the utility of this system in overcoming MDR in cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanoconjugados/química , Peptídeos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacocinética
2.
Bioconjug Chem ; 29(1): 136-148, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29191007

RESUMO

Nanoparticle (NP)-mediated drug delivery (NMDD) has emerged as a novel method to overcome the limitations of traditional systemic delivery of therapeutics, including the controlled release of the NP-associated drug cargo. Currently, our most advanced understanding of how to control NP-associated cargos is in the context of soft nanoparticles (e.g., liposomes), but less is known about controlling the release of cargos from the surface of hard NPs (e.g., gold NPs). Here we employ a semiconductor quantum dot (QD) as a prototypical hard NP platform and use intracellularly triggered actuation to achieve spatiotemporal control of drug release and modulation of drug efficacy. Conjugated to the QD are two peptides: (1) a cell-penetrating peptide (CPP) that facilitates uptake of the conjugate into the endocytic pathway and (2) a display peptide conjugated to doxorubicin (DOX) via three different linkages (ester, disulfide, and hydrazone) that are responsive to enzymatic cleavage, reducing conditions, and low pH, respectively. Formation of the QD-[peptide-DOX]-CPP complex is driven by self-assembly that allows control over both the ratio of each peptide species conjugated to the QD and the eventual drug dose delivered to cells. Förster resonance energy transfer assays confirmed successful assembly of the QD-peptide complexes and functionality of the linkages. Confocal microscopy was employed to visualize residence of the QD-[peptide-DOX]-CPP complexes in the endocytic pathway, and distinct differences in DOX localization were noted for the ester linkage, which showed clear signs of nuclear delivery versus the hydrazone, disulfide, and amide control. Finally, delivery of the QD-[peptide-DOX]-CPP conjugate resulted in cytotoxicity for the ester linkage that was comparable to free DOX. Attachment of DOX via the hydrazone linkage facilitated intermediary toxicity, while the disulfide and amide control linkages showed minimal toxicity. Our data demonstrate the utility of hard NP-peptide bioconjugates to function as multifunctional scaffolds for simultaneous control over cellular drug uptake and toxicity and the vital role played by the nature of the chemical linkage that appends the drug to the NP carrier.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/química , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Pontos Quânticos/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Endocitose , Células HeLa , Humanos , Nanoconjugados/química , Neoplasias/tratamento farmacológico , Peptídeos/química
3.
ACS Nano ; 11(6): 5598-5613, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28514167

RESUMO

We report the development of a quantum dot (QD)-peptide-fullerene (C60) electron transfer (ET)-based nanobioconjugate for the visualization of membrane potential in living cells. The bioconjugate is composed of (1) a central QD electron donor, (2) a membrane-inserting peptidyl linker, and (3) a C60 electron acceptor. The photoexcited QD donor engages in ET with the C60 acceptor, resulting in quenching of QD photoluminescence (PL) that tracks positively with the number of C60 moieties arrayed around the QD. The nature of the QD-capping ligand also modulates the quenching efficiency; a neutral ligand coating facilitates greater QD quenching than a negatively charged carboxylated ligand. Steady-state photophysical characterization confirms an ET-driven process between the donor-acceptor pair. When introduced to cells, the amphiphilic QD-peptide-C60 bioconjugate labels the plasma membrane by insertion of the peptide-C60 portion into the hydrophobic bilayer, while the hydrophilic QD sits on the exofacial side of the membrane. Depolarization of cellular membrane potential augments the ET process, which is manifested as further quenching of QD PL. We demonstrate in HeLa cells, PC12 cells, and primary cortical neurons significant QD PL quenching (ΔF/F0 of 2-20% depending on the QD-C60 separation distance) in response to membrane depolarization with KCl. Further, we show the ability to use the QD-peptide-C60 probe in combination with conventional voltage-sensitive dyes (VSDs) for simultaneous two-channel imaging of membrane potential. In in vivo imaging of cortical electrical stimulation, the optical response of the optimal QD-peptide-C60 configuration exhibits temporal responsivity to electrical stimulation similar to that of VSDs. Notably, however, the QD-peptide-C60 construct displays 20- to 40-fold greater ΔF/F0 than VSDs. The tractable nature of the QD-peptide-C60 system offers the advantages of ease of assembly, large ΔF/F0, enhanced photostability, and high throughput without the need for complicated organic synthesis or genetic engineering, respectively, that is required of traditional VSDs and fluorescent protein constructs.


Assuntos
Fulerenos/química , Potenciais da Membrana , Imagem Óptica/métodos , Peptídeos/química , Pontos Quânticos/química , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Microscopia de Fluorescência/métodos , Células PC12 , Ratos , Espectrometria de Fluorescência/métodos
4.
ACS Chem Neurosci ; 6(3): 494-504, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25688887

RESUMO

Luminescent semiconductor ∼9.5 nm nanoparticles (quantum dots: QDs) have intrinsic physiochemical and optical properties which enable us to begin to understand the mechanisms of nanoparticle mediated chemical/drug delivery. Here, we demonstrate the ability of CdSe/ZnS core/shell QDs surface functionalized with a zwitterionic compact ligand to deliver a cell-penetrating lipopeptide to the developing chick embryo brain without any apparent toxicity. Functionalized QDs were conjugated to the palmitoylated peptide WGDap(Palmitoyl)VKIKKP9GGH6, previously shown to uniquely facilitate endosomal escape, and microinjected into the embryonic chick spinal cord canal at embryo day 4 (E4). We were subsequently able to follow the labeling of spinal cord extension into the ventricles, migratory neuroblasts, maturing brain cells, and complex structures such as the choroid plexus. QD intensity extended throughout the brain, and peaked between E8 and E11 when fluorescence was concentrated in the choroid plexus before declining to hatching (E21/P0). We observed no abnormalities in embryonic patterning or embryo survival, and mRNA in situ hybridization confirmed that, at key developmental stages, the expression pattern of genes associated with different brain cell types (brain lipid binding protein, Sox-2, proteolipid protein and Class III-ß-Tubulin) all showed a normal labeling pattern and intensity. Our findings suggest that we can use chemically modified QDs to identify and track neural stem cells as they migrate, that the choroid plexus clears these injected QDs/nanoparticles from the brain after E15, and that they can deliver drugs and peptides to the developing brain.


Assuntos
Encéfalo , Peptídeos/metabolismo , Pontos Quânticos/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião de Galinha , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Microinjeções , Microscopia de Fluorescência , Peptídeos/química , Peptídeos/genética , Pontos Quânticos/química , RNA Mensageiro , Medula Espinal/efeitos dos fármacos , Medula Espinal/embriologia , Medula Espinal/metabolismo
5.
ACS Nano ; 7(10): 9489-505, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24128175

RESUMO

Understanding how semiconductor quantum dots (QDs) engage in photoinduced energy transfer with carbon allotropes is necessary for enhanced performance in solar cells and other optoelectronic devices along with the potential to create new types of (bio)sensors. Here, we systematically investigate energy transfer interactions between C60 fullerenes and four different QDs, composed of CdSe/ZnS (type I) and CdSe/CdS/ZnS (quasi type II), with emission maxima ranging from 530 to 630 nm. C60-pyrrolidine tris-acid was first coupled to the N-terminus of a hexahistidine-terminated peptide via carbodiimide chemistry to yield a C60-labeled peptide (pepC60). This peptide provided the critical means to achieve ratiometric self-assembly of the QD-(pepC60) nanoheterostructures by exploiting metal affinity coordination to the QD surface. Controlled QD-(pepC60)N bioconjugates were prepared by discretely increasing the ratio (N) of pepC60 assembled per QD in mixtures of dimethyl sulfoxide and buffer; this mixed organic/aqueous approach helped alleviate issues of C60 solubility. An extensive set of control experiments were initially performed to verify the specific and ratiometric nature of QD-(pepC60)N assembly. Photoinitiated energy transfer in these hybrid organic-inorganic systems was then interrogated using steady-state and time-resolved fluorescence along with ultrafast transient absorption spectroscopy. Coordination of pepC60 to the QD results in QD PL quenching that directly tracks with the number of peptides displayed around the QD. A detailed photophysical analysis suggests a competition between electron transfer and Förster resonance energy transfer from the QD to the C60 that is dependent upon a complex interplay of pepC60 ratio per QD, the presence of underlying spectral overlap, and contributions from QD size. These results highlight several important factors that must be considered when designing QD-donor/C60-acceptor systems for potential optoelectronic and biosensing applications.


Assuntos
Fulerenos/química , Pontos Quânticos , Semicondutores , Transporte de Elétrons , Transferência Ressonante de Energia de Fluorescência , Peptídeos/química , Análise Espectral/métodos
6.
ACS Nano ; 7(8): 7101-18, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23844838

RESUMO

Assembling DNA-based photonic wires around semiconductor quantum dots (QDs) creates optically active hybrid architectures that exploit the unique properties of both components. DNA hybridization allows positioning of multiple, carefully arranged fluorophores that can engage in sequential energy transfer steps while the QDs provide a superior energy harvesting antenna capacity that drives a Förster resonance energy transfer (FRET) cascade through the structures. Although the first generation of these composites demonstrated four-sequential energy transfer steps across a distance >150 Å, the exciton transfer efficiency reaching the final, terminal dye was estimated to be only ~0.7% with no concomitant sensitized emission observed. Had the terminal Cy7 dye utilized in that construct provided a sensitized emission, we estimate that this would have equated to an overall end-to-end ET efficiency of ≤ 0.1%. In this report, we demonstrate that overall energy flow through a second generation hybrid architecture can be significantly improved by reengineering four key aspects of the composite structure: (1) making the initial DNA modification chemistry smaller and more facile to implement, (2) optimizing donor-acceptor dye pairings, (3) varying donor-acceptor dye spacing as a function of the Förster distance R0, and (4) increasing the number of DNA wires displayed around each central QD donor. These cumulative changes lead to a 2 orders of magnitude improvement in the exciton transfer efficiency to the final terminal dye in comparison to the first-generation construct. The overall end-to-end efficiency through the optimized, five-fluorophore/four-step cascaded energy transfer system now approaches 10%. The results are analyzed using Förster theory with various sources of randomness accounted for by averaging over ensembles of modeled constructs. Fits to the spectra suggest near-ideal behavior when the photonic wires have two sequential acceptor dyes (Cy3 and Cy3.5) and exciton transfer efficiencies approaching 100% are seen when the dye spacings are 0.5 × R0. However, as additional dyes are included in each wire, strong nonidealities appear that are suspected to arise predominantly from the poor photophysical performance of the last two acceptor dyes (Cy5 and Cy5.5). The results are discussed in the context of improving exciton transfer efficiency along photonic wires and the contributions these architectures can make to understanding multistep FRET processes.


Assuntos
DNA/química , Nanotecnologia/métodos , Pontos Quânticos , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Cinética , Peptídeos/química , Fotoquímica , Fótons
7.
Bioconjug Chem ; 24(2): 269-81, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23379817

RESUMO

Semiconductor quantum dots (QDs) demonstrate select optical properties that make them of particular use in biological imaging and biosensing. Controlled attachment of biomolecules such as proteins to the QD surface is thus critically necessary for development of these functional nanobiomaterials. QD surface coatings such as poly(ethylene glycol) impart colloidal stability to the QDs, making them usable in physiological environments, but can impede attachment of proteins due to steric interactions. While this problem is being partially addressed through the development of more compact QD ligands, here we present an alternative and complementary approach to this issue by engineering rigid peptidyl linkers that can be appended onto almost all expressed proteins. The linkers are specifically designed to extend a terminal polyhistidine sequence out from the globular protein structure and penetrate the QD ligand coating to enhance binding by metal-affinity driven coordination. α-Helical linkers of two lengths terminating in either a single or triple hexahistidine motif were fused onto a single-domain antibody; these were then self-assembled onto QDs to create a model immunosensor system targeted against the biothreat agent ricin. We utilized this system to systematically evaluate the peptidyl linker design in functional assays using QDs stabilized with four different types of coating ligands including poly(ethylene glycol). We show that increased linker length, but surprisingly not added histidines, can improve protein to QD attachment and sensor performance despite the surface ligand size with both custom and commercial QD preparations. Implications for these findings on the development of QD-based biosensors are discussed.


Assuntos
Técnicas Biossensoriais , Histidina/química , Proteínas Imobilizadas/química , Pontos Quânticos , Ricina/análise , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Histidina/genética , Humanos , Proteínas Imobilizadas/genética , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/química , Oligopeptídeos/genética , Peptídeos/química , Peptídeos/genética , Polietilenoglicóis/química , Anticorpos de Domínio Único/genética
8.
ASN Neuro ; 4(6): 383-92, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22973864

RESUMO

We have previously shown that CdSe/ZnS core/shell luminescent semiconductor nanocrystals or QDs (quantum dots) coated with PEG [poly(ethylene glycol)]-appended DHLA (dihydrolipoic acid) can bind AcWG(Pal)VKIKKP(9)GGH(6) (Palm1) through the histidine residues. The coating on the QD provides colloidal stability and this peptide complex uniquely allows the QDs to be taken up by cultured cells and readily exit the endosome into the soma. We now show that use of a polyampholyte coating [in which the neutral PEG is replaced by the negatively heterocharged CL4 (compact ligand)], results in the specific targeting of the palmitoylated peptide to neurons in mature rat hippocampal slice cultures. There was no noticeable uptake by astrocytes, oligodendrocytes or microglia (identified by immunocytochemistry), demonstrating neuronal specificity to the overall negatively charged CL4 coating. In addition, EM (electron microscopy) images confirm the endosomal egress ability of the Palm1 peptide by showing a much more disperse cytosolic distribution of the CL4 QDs conjugated to Palm1 compared with CL4 QDs alone. This suggests a novel and robust way of delivering neurotherapeutics to neurons.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , Pontos Quânticos , Animais , Animais Recém-Nascidos , Sistemas de Liberação de Medicamentos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/ultraestrutura , Agonistas de Aminoácidos Excitatórios/farmacologia , Luminescência , Microscopia Confocal , Microscopia Eletrônica de Transmissão , N-Metilaspartato/farmacologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Técnicas de Cultura de Órgãos , Peptídeos/farmacologia , Fosfopiruvato Hidratase/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar
9.
ACS Nano ; 6(6): 5330-47, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22671940

RESUMO

The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe-ZnS core-shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs via metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os-peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient Förster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor-redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism.


Assuntos
Osmio/química , Pontos Quânticos , Semicondutores , Transferência de Energia , Teste de Materiais , Oxirredução
10.
J Am Chem Soc ; 134(3): 1876-91, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22220737

RESUMO

The unique photophysical properties of semiconductor quantum dot (QD) bioconjugates offer many advantages for active sensing, imaging, and optical diagnostics. In particular, QDs have been widely adopted as either donors or acceptors in Förster resonance energy transfer (FRET)-based assays and biosensors. Here, we expand their utility by demonstrating that QDs can function in a simultaneous role as acceptors and donors within time-gated FRET relays. To achieve this configuration, the QD was used as a central nanoplatform and coassembled with peptides or oligonucleotides that were labeled with either a long lifetime luminescent terbium(III) complex (Tb) or a fluorescent dye, Alexa Fluor 647 (A647). Within the FRET relay, the QD served as a critical intermediary where (1) an excited-state Tb donor transferred energy to the ground-state QD following a suitable microsecond delay and (2) the QD subsequently transferred that energy to an A647 acceptor. A detailed photophysical analysis was undertaken for each step of the FRET relay. The assembly of increasing ratios of Tb/QD was found to linearly increase the magnitude of the FRET-sensitized time-gated QD photoluminescence intensity. Importantly, the Tb was found to sensitize the subsequent QD-A647 donor-acceptor FRET pair without significantly affecting the intrinsic energy transfer efficiency within the second step in the relay. The utility of incorporating QDs into this type of time-gated energy transfer configuration was demonstrated in prototypical bioassays for monitoring protease activity and nucleic acid hybridization; the latter included a dual target format where each orthogonal FRET step transduced a separate binding event. Potential benefits of this time-gated FRET approach include: eliminating background fluorescence, accessing two approximately independent FRET mechanisms in a single QD-bioconjugate, and multiplexed biosensing based on spectrotemporal resolution of QD-FRET without requiring multiple colors of QD.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Substâncias Luminescentes/química , Peptídeos/química , Pontos Quânticos , Hibridização de Ácido Nucleico/métodos , Térbio/química
11.
Med Phys ; 38(2): 961-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452732

RESUMO

PURPOSE: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. METHODS: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. RESULTS: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation +/- 0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibility of the system was +/- 0.55% for dose fractions of approximately 100 cGy. Energy dependence was within +/- 1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R2 = 1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within +/- 0.54% of the corresponding reference ionization chamber measurements. CONCLUSIONS: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.


Assuntos
Elétrons/uso terapêutico , Fibras Ópticas , Radiometria/instrumentação , Modelos Lineares , Radioterapia , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
12.
Appl Radiat Isot ; 68(2): 364-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19932623

RESUMO

Fiber-optic-coupled dosimeters (FOCDs) are a new class of in vivo dosimetry systems that are finding increased clinical applications. Utility of FOCDs has been limited in dosimetric applications due Cerenkov-ray signal contamination. The current study reports on the characterization of a novel FOCD, with a gated detection system for the discrimination and effective elimination of the direct contribution of Cerenkov radiation, for use in the radiotherapeutic realm. System reproducibility, linearity and output dependence on dose rate, energy, field size, and temperature response were characterized for 6, 10, and 15MV photon energies. The system exhibited a linear response to absorbed dose ranging from 1 to 2400cGy and showed little dependence to dose rate variations. Overall system reproducibility was 0.52% with no field-geometry and temperature dependence.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Radiometria/instrumentação , Radioterapia de Alta Energia/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons/uso terapêutico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Phys ; 34(6): 2220-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17654923

RESUMO

Fiber-optic-coupled radioluminescent (FOC) dosimeters are members of a new family of dosimeters that are finding increased clinical applications. This study provides the first characterization of a Cu doped quartz FOC dosimeter at diagnostic energies, specifically across the range of x-ray energies and intensities used in mammographies. We characterize the calibration factors, linearity, angular dependence, and reproducibility of the FOC dosimeters. The sensitive element of each dosimeter was coupled to a photon counting photomultiplier module via 1 m long optical fibers. A computer controlled interface permitted real-time monitoring of the dosimeter output and rapid data acquisition. The axial-angular responses for all dosimeter models show nearly uniform response without any marked decrease in sensitivity. However, the normal-to-axial angular response showed a marked decrease in sensitivity of about 0 degrees C and 180 degrees C. In most clinical applications, appropriate dosimeter positioning can minimize the contributions of the varying normal-to-axial response. The FOC dosimeters having the greatest sensitive length provided the greatest sensitivity, with greatest to lowest sensitivity observed for 4.0, 1.9, 1.6, and 1.1 mm length sensitive elements. The average sensitivity of the dosimeters varies linearly with sensitive volume (R2=95%) and as a function of tube potential and target/filter combinations, generally exhibiting an increased sensitivity for higher energies. The dosimeter sensitivity as a function of tube potential had an average increase of 4.72 +/- 2.04% for dosimeter models and three target-filter combinations tested (Mo/Mo, Mo/Rh, and Rh/Rh) over a range of 25-31 kVp. All dosimeter models exhibited a linear response (R2 > or = 0.997) to exposure for all target-filter combinations, tube potentials, and tube current-time product stations evaluated and demonstrated reproducibility within 2%. All of the dosimeters examined in this study provided a response adequate for the accurate measurement of doses in clinical mammography applications.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Medições Luminescentes/instrumentação , Mamografia/instrumentação , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Fibras Ópticas , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Radiat Prot Dosimetry ; 120(1-4): 20-3, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16717108

RESUMO

An optical fibre point dosemeter based on the gated detection of the luminescence from a Cu(1+)-doped fused quartz detector effectively eliminated errors due to Cerenkov radiation and native fibre fluorescence. The gated optical fibre dosemeter overcomes serious problems faced by scintillation and optically stimulated luminescence approaches to optical fibre point dosimetry. The dosemeter was tested using an external beam radiotherapy machine that provided pulses of 6 MV X rays. Gated detection was used to discriminate the signal collected during the radiation pulses, which included contributions from Cerenkov radiation and native fibre fluorescence, from the signal collected between the radiation pulses, which contained only the long-lived luminescence from the Cu(1+)-doped fused quartz detector. Gated detection of the luminescence provided accurate, real-time dose measurements that were linear with absorbed dose, independent of dose rate and that were accurate for all field sizes studied.


Assuntos
Artefatos , Tecnologia de Fibra Óptica/instrumentação , Dosimetria Termoluminescente/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Dosimetria Termoluminescente/métodos
15.
Cardiovasc Revasc Med ; 6(4): 163-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16326378

RESUMO

BACKGROUND: This study is about the measurement of radiation dose contribution to the coronary arteries during intravascular brachytherapy with beta and gamma emitters utilizing in vivo optical fiber dosimeters. METHODS AND MATERIALS: Domestic pigs were used. With each measurement, catheters were introduced into two different coronary arteries, including the left circumflex (LCX), the left anterior descending (LAD), the first diagonal, and/or the right coronary artery (RCA). A radioactive source (192Ir, 90Sr/Y, or 32P) and the dosimeter were loaded in each of these catheters. Data were collected as the dosimeter was being retracted at a constant rate via computer control. RESULTS: The radiation dose was normalized to 100% at a 2-mm radial distance from the source. When radiating a branching artery, the dose to the bifurcation at 5 mm from the source was 35%, 10%, and 3% for the 192Ir (10 seeds), 90Sr/Y (40 mm), and 32P sources, respectively. When utilizing a 23-seed 192Ir source, the dose is 40% at a 5-mm distance. However, radiation of the RCA did not result in dosing to the LAD or LCX using any source. CONCLUSIONS: The dose to adjacent artery segments is less with beta than with gamma emitters. Significant dose exposition is noted when using gamma emitters at a distance of 5 mm. The results can serve as a guideline for establishing prescription doses and safety margins for the treatment of bifurcation lesions and retreatment of the arteries.


Assuntos
Braquiterapia/métodos , Vasos Coronários/efeitos da radiação , Tecnologia de Fibra Óptica , Animais , Angiografia Coronária , Reestenose Coronária/diagnóstico por imagem , Reestenose Coronária/radioterapia , Desenho de Equipamento , Radioisótopos de Irídio/uso terapêutico , Fibras Ópticas , Radioisótopos de Fósforo/uso terapêutico , Radiometria/instrumentação , Radioisótopos de Estrôncio/uso terapêutico , Suínos , Radioisótopos de Ítrio/uso terapêutico
16.
Appl Opt ; 43(8): 1663-8, 2004 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15046169

RESUMO

Gated detection of the output of a fiber-optic-coupled radiation dosimeter effectively eliminated the direct contribution of Cerenkov radiation to the signal. The radiation source was an external beam radiotherapy machine that provided pulses of 6-MeV x rays. Gated detection was used to discriminate the signal collected during the radiation pulses, including Cerenkov interference, from the signal collected between the radiation pulses due only to phosphorescence from the Cu(1+)-doped glass detector. Gated detection of the long-lived phosphorescence of the Cu(1+)-doped glass provided real-time dose measurements that were linear with the absorbed dose and that were accurate for all field sizes studied.


Assuntos
Sistemas Computacionais , Tecnologia de Fibra Óptica , Radiometria/instrumentação , Humanos , Luminescência , Fibras Ópticas , Aceleradores de Partículas , Radioterapia/instrumentação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA