Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108770

RESUMO

Diet-induced obesity (DIO) is a contributor to co-morbidities, resulting in alterations in hormones, lipids, and low-grade inflammation, with the cannabinoid type 2 receptor (CB2) contributing to the inflammatory response. The effects of modulating CB2 with pharmacological treatments on inflammation and adaptations to the obese state are not known. Therefore, we aimed to investigate the molecular mechanisms in adipose tissue of CB2 agonism and CB2 antagonism treatment in a DIO model. Male Sprague Dawley rats were placed on a high-fat diet (HFD) (21% fat) for 9 weeks, then received daily intraperitoneal injections with a vehicle, AM630 (0.3 mg/kg), or AM1241 (3 mg/kg), for a further 6 weeks. AM630 or AM1241 treatment in DIO rats did not alter their body weight, food intake, or liver weight, and it had no effect on their numerous circulating cytokines or peri-renal fat pad mass. AM1241 decreased heart weight and BAT weight; both treatments (AM630 or AM1241) decreased plasma leptin levels, while AM630 also decreased plasma ghrelin and GLP-1 levels. Both treatments decreased Adrb3 and TNF-α mRNA levels in eWAT and TNF-α levels in pWAT. AM630 treatment also decreased the mRNA levels of Cnr2, leptin, and Slc2a4 in eWAT. In BAT, both treatments decreased leptin, UCP1, and Slc2a4 mRNA levels, with AM1241 also decreasing Adrb3, IL1ß, and PRDM16 mRNA levels, and AM630 increasing IL6 mRNA levels. In DIO, CB2 agonist and CB2 antagonist treatment reduces circulating leptin in the absence of weight loss and modulates the mRNA responsible for thermogenesis.


Assuntos
Canabinoides , Leptina , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/efeitos adversos , RNA Mensageiro/genética , Ratos Sprague-Dawley , Obesidade/tratamento farmacológico , Obesidade/etiologia , Tecido Adiposo , Canabinoides/farmacologia , Receptores de Canabinoides , Dieta Hiperlipídica/efeitos adversos , Inflamação/induzido quimicamente , Termogênese , Receptor CB2 de Canabinoide/genética
3.
Br J Pharmacol ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095602

RESUMO

Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as ß-adrenoceptor antagonists (ß-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality. GPCR targets currently being explored for the development of novel heart failure therapeutics include adenosine receptor, formyl peptide receptor, relaxin/insulin-like family peptide receptor, vasopressin receptor, endothelin receptor and the glucagon-like peptide 1 receptor. Many GPCR drug candidates are limited by insufficient efficacy and/or dose-limiting unwanted effects. Understanding the current challenges hindering successful clinical translation and the potential to overcome existing limitations will facilitate the future development of novel heart failure therapeutics.

4.
Pharmacol Res Perspect ; 8(5): e00643, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32813332

RESUMO

The ß3 -adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at ß-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [3 H]-2-deoxyglucose uptake, cellular glycolysis, and O2 consumption. Mirabegron increased cyclic AMP levels, UCP1 mRNA content, glucose uptake, and cellular glycolysis in brown adipocytes, and these effects were either absent or reduced in white adipocytes. In brite adipocytes, mirabegron increased cyclic AMP levels and UCP1 mRNA content resulting in increased UCP1-mediated oxygen consumption, glucose uptake, and cellular glycolysis. The metabolic effects of mirabegron in both brown and brite adipocytes were primarily due to actions at ß3 -adrenoceptors as they were largely absent in adipocytes derived from ß3 -adrenoceptor knockout mice. In vivo, mirabegron increased whole body oxygen consumption, glucose uptake into brown and inguinal white adipose tissue, and improved glucose tolerance, all effects that required the presence of the ß3 -adrenoceptor. Furthermore, in UCP1 knockout mice, the effects of mirabegron on glucose tolerance were attenuated. Thus, mirabegron had effects on cellular metabolism in adipocytes that improved glucose handling in vivo, and were primarily due to actions at the ß3 -adrenoceptor.


Assuntos
Acetanilidas/administração & dosagem , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Glicólise/efeitos dos fármacos , Tiazóis/administração & dosagem , Proteína Desacopladora 1/genética , Acetanilidas/farmacologia , Monofosfato de Adenosina/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetulus , Desoxiglucose/metabolismo , Técnicas de Inativação de Genes , Masculino , Camundongos , Oxigênio/metabolismo , Tiazóis/farmacologia
5.
Sci Signal ; 12(596)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455725

RESUMO

Natural killer (NK) cells are innate lymphocytes that play a major role in immunosurveillance against tumor initiation and metastatic spread. The signals and checkpoints that regulate NK cell fitness and function in the tumor microenvironment are not well defined. Transforming growth factor-ß (TGF-ß) is a suppressor of NK cells that inhibits interleukin-15 (IL-15)-dependent signaling events and increases the abundance of receptors that promote tissue residency. Here, we showed that NK cells express the type I activin receptor ALK4, which, upon binding to its ligand activin-A, phosphorylated SMAD2/3 to suppress IL-15-mediated NK cell metabolism. Activin-A impaired human and mouse NK cell proliferation and reduced the production of granzyme B to impair tumor killing. Similar to TGF-ß, activin-A also induced SMAD2/3 phosphorylation and stimulated NK cells to increase their cell surface expression of several markers of ILC1 cells. Activin-A also induced these changes in TGF-ß receptor-deficient NK cells, suggesting that activin-A and TGF-ß stimulate independent pathways that drive SMAD2/3-mediated NK cell suppression. Last, inhibition of activin-A by follistatin substantially slowed orthotopic melanoma growth in mice. These data highlight the relevance of examining TGF-ß-independent SMAD2/3 signaling mechanisms as a therapeutic axis to relieve NK cell suppression and promote antitumor immunity.


Assuntos
Ativinas/antagonistas & inibidores , Folistatina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ativinas/metabolismo , Animais , Células Matadoras Naturais , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
6.
BMC Cancer ; 19(1): 157, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777055

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive type of primary brain cancer. With median survival of less than 15 months, identification and validation of new GBM therapeutic targets is of critical importance. RESULTS: In this study we tested expression and performed pharmacological characterization of the calcitonin receptor (CTR) as well as other members of the calcitonin family of receptors in high-grade glioma (HGG) cell lines derived from individual patient tumours, cultured in defined conditions. Previous immunohistochemical data demonstrated CTR expression in GBM biopsies and we were able to confirm CALCR (gene encoding CTR) expression. However, as assessed by cAMP accumulation assay, only one of the studied cell lines expressed functional CTR, while the other cell lines have functional CGRP (CLR/RAMP1) receptors. The only CTR-expressing cell line (SB2b) showed modest coupling to the cAMP pathway and no activation of other known CTR signaling pathways, including ERK1/2 and p38 MAP kinases, and Ca2+ mobilization, supportive of low cell surface receptor expression. Exome sequencing data failed to account for the discrepancy between functional data and expression on the cell lines that do not respond to calcitonin(s) with no deleterious non-synonymous polymorphisms detected, suggesting that other factors may be at play, such as alternative splicing or rapid constitutive receptor internalisation. CONCLUSIONS: This study shows that GPCR signaling can display significant variation depending on cellular system used, and effects seen in model recombinant cell lines or tumour cell lines are not always reproduced in a more physiologically relevant system and vice versa.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Glioblastoma/mortalidade , Humanos , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Transdução de Sinais , Análise de Sobrevida , Transcriptoma , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Appl Physiol (1985) ; 125(5): 1368-1377, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30138082

RESUMO

Preterm infants frequently suffer cardiovascular compromise, with hypotension and/or low systemic blood flow, leading to tissue hypoxia-ischemia (HI). Many preterm infants respond inadequately to inotropic treatments using adrenergic agonists such as dobutamine (DB) or dopamine (DA). This may be because of altered cardiac adrenoceptor expression because of tissue HI or prolonged exposure to adrenergic agonists. We assessed the effects of severe HI with and without DB/DA treatment on cardiac adrenoceptor expression in preterm fetal sheep. Fetal sheep (93-95 days) exposed to sham surgery or severe HI induced by umbilical cord occlusion received intravenous DB or saline for 74 h (HI + DB, HI, Sham + DB, Sham). The HI groups were also compared with fetal sheep exposed to HI and DA. Fetal hearts were collected to determine ß-adrenoceptor numbers using [125I]-cyanopindolol binding and mRNA expression of ß1-, ß2-, α1A-, α2A-, or α2B-adrenoceptors. The HI group had increased ß-adrenoceptor numbers compared with all other groups in all four heart chambers ( P < 0.05). This increase in ß-adrenoceptor numbers in the HI group was significantly reduced by DB infusion in all four heart chambers, but DA infusion in the HI group only reduced ß-adrenoceptor numbers in the left atria and ventricle. DB alone did not affect ß-adrenoceptor numbers in the sham animals. Changes in ß1-adrenoceptor mRNA levels trended to parallel the binding results. We conclude that HI upregulates preterm fetal cardiac ß-adrenoceptors, but prolonged exposure to adrenergic agonists downregulates adrenoceptors in the preterm heart exposed to HI and may underpin the frequent failure of inotropic therapy in preterm infants. NEW & NOTEWORTHY This is the first study, to our knowledge, on the effects of hypoxia-ischemia and adrenergic agonists on adrenoceptors in the preterm heart. In fetal sheep, we demonstrate that hypoxia-ischemia increases cardiac ß-adrenoceptor numbers. However, exposure to both hypoxia-ischemia and adrenergic agonists (dobutamine or dopamine) reduces the increase in ß-adrenoceptor numbers, which may underpin the inadequate response in human preterm infants to inotropic therapy using adrenergic agonists. Dobutamine alone does not affect the cardiac adrenoceptors in the sham animals.


Assuntos
Hipóxia/metabolismo , Recém-Nascido Prematuro/metabolismo , Isquemia/metabolismo , Miocárdio/metabolismo , Receptores Adrenérgicos/metabolismo , Animais , Animais Recém-Nascidos , Cardiotônicos , Dobutamina , Dopamina , Coração/efeitos dos fármacos , Modelos Animais , Ovinos
8.
J Mol Endocrinol ; 60(3): 213-224, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29535183

RESUMO

Insulin-like peptide 5 (INSL5) is a newly discovered gut hormone expressed in colonic enteroendocrine L-cells but little is known about its biological function. Here, we show using RT-qPCR and in situ hybridisation that Insl5 mRNA is highly expressed in the mouse colonic mucosa, colocalised with proglucagon immunoreactivity. In comparison, mRNA for RXFP4 (the cognate receptor for INSL5) is expressed in various mouse tissues, including the intestinal tract. We show that the human enteroendocrine L-cell model NCI-H716 cell line, and goblet-like colorectal cell lines SW1463 and LS513 endogenously express RXFP4. Stimulation of NCI-H716 cells with INSL5 produced phosphorylation of ERK1/2 (Thr202/Tyr204), AKT (Thr308 and Ser473) and S6RP (Ser235/236) and inhibited cAMP production but did not stimulate Ca2+ release. Acute INSL5 treatment had no effect on GLP-1 secretion mediated by carbachol or insulin, but modestly inhibited forskolin-stimulated GLP-1 secretion in NCI-H716 cells. However, chronic INSL5 pre-treatment (18 h) increased basal GLP-1 secretion and prevented the inhibitory effect of acute INSL5 administration. LS513 cells were found to be unresponsive to INSL5 despite expressing RXFP4 Another enteroendocrine L-cell model, mouse GLUTag cells did not express detectable levels of Rxfp4 and were unresponsive to INSL5. This study provides novel insights into possible autocrine/paracrine roles of INSL5 in the intestinal tract.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Colo/metabolismo , AMP Cíclico/biossíntese , Perfilação da Expressão Gênica , Células Caliciformes/metabolismo , Humanos , Insulina/genética , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
9.
Biochem Pharmacol ; 148: 27-40, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29175420

RESUMO

The capacity of G protein-coupled receptors to modulate mechanistic target of rapamycin (mTOR) activity is a newly emerging paradigm with the potential to link cell surface receptors with cell survival. Cardiomyocyte viability is linked to signalling pathways involving Akt and mTOR, as well as increased glucose uptake and utilization. Our aim was to determine whether the α1A-adrenoceptor (AR) couples to these protective pathways, and increased glucose uptake. We characterised α1A-AR signalling in CHO-K1 cells co-expressing the human α1A-AR and GLUT4 (CHOα1AGLUT4myc) and in neonatal rat ventricular cardiomyocytes (NRVM), and measured glucose uptake, intracellular Ca2+ mobilization, and phosphorylation of mTOR, Akt, 5' adenosine monophosphate-activated kinase (AMPK) and S6 ribosomal protein (S6rp). In both systems, noradrenaline and the α1A-AR selective agonist A61603 stimulated glucose uptake by parallel pathways involving mTOR and AMPK, whereas another α1-AR agonist oxymetazoline increased glucose uptake predominantly by mTOR. All agonists promoted phosphorylation of mTOR at Ser2448 and Ser2481, indicating activation of both mTORC1 and mTORC2, but did not increase Akt phosphorylation. In CHOα1AGLUT4myc cells, siRNA directed against rictor but not raptor suppressed α1A-AR mediated glucose uptake. We have thus identified mTORC2 as a key component in glucose uptake stimulated by α1A-AR agonists. Our findings identify a novel link between the α1A-AR, mTORC2 and glucose uptake, that have been implicated separately in cardiomyocyte survival. Our studies provide an improved framework for examining the utility of α1A-AR selective agonists as tools in the treatment of cardiac dysfunction.


Assuntos
Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células CHO , Calcimicina , Cálcio , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Norepinefrina , Fosforilação , Prazosina/metabolismo , Prazosina/farmacologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
10.
Cell Signal ; 42: 54-66, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28970184

RESUMO

Recruitment and activation of brite (or beige) adipocytes has been advocated as a potential avenue for manipulating whole-body energy expenditure. Despite numerous studies illustrating the differences in gene and protein markers between brown, brite and white adipocytes, there is very little information on the adrenergic regulation and function of these brite adipocytes. We have compared the functional (cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, extracellular acidification rates, calcium influx) profiles of mouse adipocytes cultured from three contrasting depots, namely interscapular brown adipose tissue, and inguinal or epididymal white adipose tissues, following chronic treatment with the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone. Prototypical brown adipocytes readily express ß3-adrenoceptors, and ß3-adrenoceptor stimulation increases cyclic AMP accumulation, oxygen consumption rates, mitochondrial function, glucose uptake, and extracellular acidification rates. Treatment of brown adipocytes with rosiglitazone increases uncoupling protein 1 (UCP1) levels, and increases ß3-adrenoceptor mitochondrial function but does not affect glucose uptake responses. In contrast, inguinal white adipocytes only express UCP1 and ß3-adrenoceptors following rosiglitazone treatment, which results in an increase in all ß3-adrenoceptor-mediated functions. The effect of rosiglitazone in epididymal white adipocytes, was much lower compared to inguinal white adipocytes. Rosiglitazone also increased α1-adrenoceptor mediated increases in calcium influx and glucose uptake (but not mitochondrial function) in inguinal and epididymal white adipocytes. In conclusion, the PPARγ agonist rosiglitazone promotes the induction and function of brite adipocytes cultured from inguinal and epididymal white adipose depots.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Receptores Adrenérgicos beta 3/genética , Tiazolidinedionas/farmacologia , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Transporte Biológico , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Especificidade de Órgãos , Consumo de Oxigênio/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , Receptores Adrenérgicos beta 3/metabolismo , Rosiglitazona , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Sci Rep ; 7(1): 2968, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592882

RESUMO

Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs). ML290 did not directly compete with orthosteric relaxin binding and did not affect binding kinetics, but did increase binding to RXFP1. In HEK-RXFP1 cells, ML290 stimulated cAMP accumulation and p38MAPK phosphorylation but not cGMP accumulation or ERK1/2 phosphorylation although prior addition of ML290 increased p-ERK1/2 responses to relaxin. In human primary vascular endothelial and smooth muscle cells that endogenously express RXFP1, ML290 increased both cAMP and cGMP accumulation but not p-ERK1/2. In HCFs, ML290 increased cGMP accumulation but did not affect p-ERK1/2 and given chronically activated MMP-2 expression and inhibited TGF-ß1-induced Smad2 and Smad3 phosphorylation. In vascular cells, ML290 was 10x more potent for cGMP accumulation and p-p38MAPK than for cAMP accumulation. ML290 caused strong coupling of RXFP1 to Gαs and GαoB but weak coupling to Gαi3. ML290 exhibited signalling bias at RXFP1 possessing a signalling profile indicative of vasodilator and anti-fibrotic properties.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/agonistas , Receptores de Peptídeos/química , Regulação Alostérica , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Cinética , Ligantes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mioblastos/metabolismo , Fosforilação , Ligação Proteica , Relaxina/química , Relaxina/farmacologia , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 390(1): 105-111, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27888281

RESUMO

The relaxin family peptide receptor 4 (RXFP4) is a G protein-coupled receptor (GPCR) expressed in the colorectum with emerging roles in metabolism and appetite regulation. It is activated by its cognate ligand insulin-like peptide 5 (INSL5) that is expressed in enteroendocrine L cells in the gut. Whether other evolutionarily related peptides such as relaxin-2, relaxin-3, or INSL3 activate RXFP4 signal transduction mechanisms with a pattern similar to or distinct from INSL5 is still unclear. In this study, we compare the signaling pathways activated by various relaxin family peptides to INSL5. We found that, like INSL5, relaxin-3 activated ERK1/2, p38MAPK, Akt, and S6RP phosphorylations leading to increased cell proliferation and also caused GRK and ß-arrestin-mediated receptor internalization. Interestingly, relaxin-3 was slightly more potent than INSL5 in ERK1/2 and Akt phosphorylations, but both peptides were almost equipotent in adenylyl cyclase inhibition, S6RP phosphorylation, and cell proliferation. In addition, relaxin-3 showed greater efficacy only in Akt phosphorylation but not in the other pathways investigated. In contrast, no signaling activity or receptor internalization mechanisms were observed following relaxin-2 and INSL3. In conclusion, relaxin-3 is a high-efficacy agonist at RXFP4 with a comparable signal transduction profile to INSL5.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores de Peptídeos/agonistas , Relaxina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Humanos , Insulina/farmacologia , Ligantes , Fosforilação , Transporte Proteico , Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Fatores de Tempo , Transfecção , beta-Arrestinas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Br J Pharmacol ; 174(10): 1077-1089, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27243554

RESUMO

BACKGROUND AND PURPOSE: Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide-bonded peptide of the insulin/relaxin superfamily, uniquely expressed in enteroendocrine L-cells of the colon. It is the cognate ligand of relaxin family peptide RXFP4 receptor that is mainly expressed in the colorectum and enteric nervous system. This study identifies new signalling pathways activated by INSL5 acting on RXFP4 receptors. EXPERIMENTAL APPROACH: INSL5/RXFP4 receptor signalling was investigated using AlphaScreen® proximity assays. Recruitment of Gαi/o proteins by RXFP4 receptors was determined by rescue of Pertussis toxin (PTX)-inhibited cAMP and ERK1/2 responses following transient transfection of PTX-insensitive Gαi/o C351I mutants. Cell proliferation was studied with bromodeoxyuridine. RXFP4 receptor interactions with ß-arrestins, GPCR kinase 2 (GRK2), KRas and Rab5a was assessed with real-time BRET. Gene expression was investigated using real-time quantitative PCR. Insulin release was measured using HTRF and intracellular Ca2+ flux monitored in a Flexstation® using Fluo-4-AM. KEY RESULTS: INSL5 inhibited forskolin-stimulated cAMP accumulation and increased phosphorylation of ERK1/2, p38MAPK, Akt Ser473 , Akt Thr308 and S6 ribosomal protein. cAMP and ERK1/2 responses were abolished by PTX and rescued by mGαoA , mGαoB and mGαi2 and to a lesser extent mGαi1 and mGαi3 . RXFP4 receptors interacted with GRK2 and ß-arrestins, moved towards Rab5a and away from KRas, indicating internalisation following receptor activation. INSL5 inhibited glucose-stimulated insulin secretion and Ca2+ mobilisation in MIN6 insulinoma cells and forskolin-stimulated cAMP accumulation in NCI-H716 enteroendocrine cells. CONCLUSIONS AND IMPLICATIONS: Knowledge of signalling pathways activated by INSL5 at RXFP4 receptors is essential for understanding the biological roles of this novel gut hormone. LINKED ARTICLES: This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.


Assuntos
Insulina/farmacologia , Proteínas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetulus , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína S6 Ribossômica/metabolismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Nat Immunol ; 17(7): 816-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213690

RESUMO

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Proliferação de Células/genética , Citotoxicidade Imunológica/genética , Vigilância Imunológica , Interferon gama/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Ativação Linfocitária/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
15.
Cell Rep ; 11(1): 85-97, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25818301

RESUMO

Natural killer (NK) cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226) identifies two distinct NK cell functional subsets: DNAM-1(+) and DNAM-1(-) NK cells. DNAM-1(+) NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1(-) NK cells that differentiate from DNAM-1(+) NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Linhagem da Célula/genética , Células Matadoras Naturais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Linhagem da Célula/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/citologia , Transdução de Sinais
16.
Diabetes ; 63(12): 4115-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008179

RESUMO

There is an increasing worldwide epidemic of type 2 diabetes that poses major health problems. We have identified a novel physiological system that increases glucose uptake in skeletal muscle but not in white adipocytes. Activation of this system improves glucose tolerance in Goto-Kakizaki rats or mice fed a high-fat diet, which are established models for type 2 diabetes. The pathway involves activation of ß2-adrenoceptors that increase cAMP levels and activate cAMP-dependent protein kinase, which phosphorylates mammalian target of rapamycin complex 2 (mTORC2) at S2481. The active mTORC2 causes translocation of GLUT4 to the plasma membrane and glucose uptake without the involvement of Akt or AS160. Stimulation of glucose uptake into skeletal muscle after activation of the sympathetic nervous system is likely to be of high physiological relevance because mTORC2 activation was observed at the cellular, tissue, and whole-animal level in rodent and human systems. This signaling pathway provides new opportunities for the treatment of type 2 diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Teste de Tolerância a Glucose , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
17.
Br J Pharmacol ; 165(5): 1442-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21883150

RESUMO

BACKGROUND AND PURPOSE: ß-Adrenoceptor stimulation induces glucose uptake in several insulin-sensitive tissues by poorly understood mechanisms. EXPERIMENTAL APPROACH: We used a model system in CHO-K1 cells expressing the human ß(2)-adrenoceptor and glucose transporter 4 (GLUT4) to investigate the signalling mechanisms involved. KEY RESULTS: In CHO-K1 cells, there was no response to ß-adrenoceptor agonists. The introduction of ß(2)-adrenoceptors and GLUT4 into these cells caused increased glucose uptake in response to ß-adrenoceptor agonists. GLUT4 translocation occurred in response to insulin and ß(2)-adrenoceptor stimulation, although the key insulin signalling intermediate PKB was not phosphorylated in response to ß(2)-adrenoceptor stimulation. Truncation of the C-terminus of the ß(2)-adrenoceptor at position 349 to remove known phosphorylation sites for GPCR kinases (GRKs) or at position 344 to remove an additional PKA site together with the GRK phosphorylation sites did not significantly affect cAMP accumulation but decreased ß(2)-adrenoceptor-stimulated glucose uptake. Furthermore, inhibition of GRK by transfection of the ßARKct construct inhibited ß(2)-adrenoceptor-mediated glucose uptake and GLUT4 translocation, and overexpression of a kinase-dead GRK2 mutant (GRK2 K220R) also inhibited GLUT4 translocation. Introducing ß(2)-adrenoceptors lacking phosphorylation sites for GRK or PKA demonstrated that the GRK sites, but not the PKA sites, were necessary for GLUT4 translocation. CONCLUSIONS AND IMPLICATIONS: Glucose uptake in response to activation of ß(2)-adrenoceptors involves translocation of GLUT4 in this model system. The mechanism is dependent on the C-terminus of the ß(2)-adrenoceptor, requires GRK phosphorylation sites, and involves a signalling pathway distinct from that stimulated by insulin.


Assuntos
Quinases de Receptores Acoplados a Proteína G/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , AMP Cíclico/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Insulina/metabolismo , Peptídeos/metabolismo , Toxina Pertussis/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
PLoS One ; 6(7): e22510, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818330

RESUMO

BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally) once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin), plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.


Assuntos
Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/patologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/farmacologia , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Masculino , Células Musculares/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/enzimologia , Naftoquinonas/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
19.
J Neurochem ; 117(5): 915-26, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447002

RESUMO

In the brain, glycogen is primarily stored in astrocytes where it is regulated by several hormones/neurotransmitters, including noradrenaline that controls glycogen breakdown (in the short term) and synthesis. Here, we have examined the adrenoceptor (AR) subtype that mediates the glycogenic effect of noradrenaline in chick primary astrocytes by the measurement of glycogen turnover (total (14) C incorporation of glucose into glycogen) following noradrenergic activation. Noradrenaline and insulin increased glycogen turnover in a concentration-dependent manner. The effect of noradrenaline was mimicked by stimulation of α(2) -ARs (and to a lesser degree by ß(3) -ARs), but not by stimulation of α(1) -, ß(1) -, or ß(2) -ARs, and occurred only in astrocytes and not neurons. In chick astrocytes, studies using RT-PCR and radioligand binding showed that α(2A) - and α(2C) -AR mRNA and protein were present. α(2) -AR- or insulin-mediated glycogen turnover was inhibited by phosphatidylinositol-3 kinase inhibitors, and both insulin and clonidine caused phosphorylation of Akt and glycogen synthase kinase-3 in chick astrocytes. α(2) -AR but not insulin-mediated glycogen turnover was inhibited by pertussis toxin pre-treatment indicating involvement of Gi/o proteins. These results show that the increase in glycogen turnover caused by noradrenaline is because of activation of α(2) -ARs that increase glycogen turnover in astrocytes utilizing a Gi/o-PI3K pathway.


Assuntos
Astrócitos/metabolismo , Glicogênio/metabolismo , Norepinefrina/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Biotransformação , Células Cultivadas , Embrião de Galinha , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipoglicemiantes/farmacologia , Cinética , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Prosencéfalo/metabolismo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleotídeos/farmacologia , Ioimbina
20.
Mol Pharmacol ; 79(2): 298-307, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20978120

RESUMO

Although G protein-coupled receptors are often categorized in terms of their primary coupling to a given type of Gα protein subunit, it is now well established that many show promiscuous coupling and activate multiple signaling pathways. Furthermore, some agonists selectively activate signaling pathways by promoting interaction between distinct receptor conformational states and particular Gα subunits or alternative signaling proteins. We have tested the capacity of agonists to stimulate Ca(2+) release, cAMP accumulation, and changes in extracellular acidification rate (ECAR) at the human α(1A)-adrenoceptor. Signaling bias factors were determined by novel application of an operational model of agonism and compared with the reference endogenous agonist norepinephrine; values significantly different from 1.0 indicated an agonist that promoted receptor conformations distinct from that favored by norepinephrine. Oxymetazoline was a full agonist for ECAR and a partial agonist for Ca(2+) release (bias factor 8.2) but failed to stimulate cAMP production. Phenylephrine showed substantial bias toward ECAR versus Ca(2+) release or cAMP accumulation (bias factors 21 and 33, respectively) but did not display bias between Ca(2+) and cAMP pathways. Cirazoline and N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide (A61603) displayed bias toward cAMP relative to Ca(2+) release (bias factors of 7.4 and 8.6). It is noteworthy that epinephrine, a second endogenous adrenoceptor agonist, did not display bias relative to norepinephrine. Our finding that phenylephrine displayed significant signaling bias, despite being highly similar in structure to epinephrine, indicates that subtle differences in agonist-receptor interaction can affect conformational changes in cytoplasmic domains and thereby modulate the repertoire of effector proteins that are activated.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Primers do DNA , Humanos , Imidazóis/farmacologia , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Tetra-Hidronaftalenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA