Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 62(6): 707-16, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22788109

RESUMO

In this study, removing sulfur dioxide (SO2), nitrogen oxides (NO(x)), and mercury (Hg) from simulated flue gas was investigated in two laboratory-sized bubbling reactors that simulated an oxidizing reactor (where the NO and Hg(0) oxidation reactions are expected to occur) and a wet limestone scrubber, respectively. A sodium chlorite solution was used as the oxidizing agent. The sodium chlorite solution was an effective additive that enhanced the NO(x), Hg, and SO2 capture from the flue gas. Furthermore, it was discovered that the location of the sodium chlorite application (before, in, or after the wet scrubber) greatly influences which pollutants are removed and the amount removed. This effect is related to the chemical conditions (pH, absence/presence of particular gases) that are present at different positions throughout the flue gas cleaning system profile. The research results indicated that there is a potential to achieve nearly zero SO2, NO(x), and Hg emissions (complete SO2, NO, and Hg removals and -90% of NO(x) absorption from initial values of 1500 ppmv of SO2, 200 ppmv of NO(x), and 206 microg/m3 of Hg(0)) from the flue gas when sodium chlorite was applied before the wet limestone scrubber. However applying the oxidizer after the wet limestone scrubber was the most effective configuration for Hg and NO(x) control for extremely low chlorite concentrations (below 0.002 M) and therefore appears to be the best configuration for Hg control or as an additional step in NO(x) recleaning (after other NO(x) control facilities). The multipollutant scrubber, into which the chlorite was injected simultaneously with the calcium carbonate slurry, appeared to be the least expensive solution (when consider only capital cost), but exhibited the lowest NO(x) absorption at -50%. The bench-scale test results presented can be used to develop performance predictions for a full- or pilot-scale multipollutant flue gas cleaning system equipped with wet flue gas desulfurization scrubber.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Cloretos/química , Gases/química
2.
J Air Waste Manag Assoc ; 62(2): 212-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22442937

RESUMO

This paper presents a study on the simultaneous removal of SO2, NO(x) and Hg (both Hg0 and Hg2+) from a simulated flue gas by oxidant injection in a bench-simulated wet limestone scrubber for a wide range of slurry pH. The slurry pH strongly influenced the chemical mechanism in the scrubber and, therefore, affected pollutant removal. This paper also examines the potential ClO2(gas) reemission from a developed multipollutant scrubber at different slurry pHs. To better understand the chemical mechanisms at each slurry pH and to apply a mass balance to the process, detailed product ion analyses were performed for all experiments. Ion analysis covered three different chlorine species (chlorite, chloride, chlorate), sulfate, nitrite and nitrate. Different NO(x) removal efficiencies and mechanisms were found in acidic and alkaline pHs in the multipollutant scrubber. The acidic solution was favorable for NO and Hg0 oxidation, but increasing the slurry pH above 7.0 was disadvantageous for NO and Hg oxidation/removal. However the rate of NO(x) absorption (by percentage) was higher for the alkaline solution.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Resíduos Industriais , Mercúrio/isolamento & purificação , Óxidos de Nitrogênio/isolamento & purificação , Dióxido de Enxofre/isolamento & purificação , Poluição do Ar/prevenção & controle , Compostos Clorados/análise , Concentração de Íons de Hidrogênio , Oxirredução , Óxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA