Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
2.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
3.
Med J (Ft Sam Houst Tex) ; (PB 8-21-01/02/03): 156-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33666930

RESUMO

In December 2019, an outbreak of pneumonia caused by a novel coronavirus, severe acute respiratory syndrome (SARS)-CoV-2, occurred in Wuhan city, Hubei province, China.1 South Korea saw its first confirmed Coronavirus Disease 2019 (COVID-19) case on January 20, 2020, when an infected woman from Wuhan, China arrived in S. Korea via Incheon International Airport.1 By mid-February, SARS-CoV-2 was rapidly spreading in the southern city of Daegu, S. Korea in proximity to three US Forces Korea (USFK) military installations. COVID-19 cases continued to increase during the following weeks, reaching a peak of nearly 1,000 confirmed cases per day by the end of February. As cases surged dramatically, over 28,000 USFK service members, family members, and Department of Defense (DoD) employees were at a risk of exposure to COVID-19. On February 24, clinicians diagnosed the first confirmed case in the USFK population, a 61 year-old widow of a retired service member. This individual, who experienced a mild illness, was the spouse of a retired US military veteran living in S. Korea. The retiree and his spouse both had access to military posts in S. Korea, and the spouse tested positive after she had been on one of the military bases in Area IV (Figure 1). The following day, USFK reported its first confirmed case in a service member, which was the triggering event for the 1st Area Medical Laboratory (AML) to deploy to S. Korea.


Assuntos
COVID-19/diagnóstico , COVID-19/terapia , Controle de Doenças Transmissíveis , Cooperação Internacional , Militares , COVID-19/epidemiologia , Humanos , República da Coreia , Estados Unidos
4.
Vaccine ; 39(2): 202-208, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33309082

RESUMO

BACKGROUND: Recent deadly outbreaks of Marburg virus underscore the need for an effective vaccine. A summary of the latest research is needed for this WHO priority pathogen. This systematic review aimed to determine progress towards a vaccine for Marburg virus. METHODS: Article search criteria were developed to query PubMed for peer-reviewed articles from 1990 through 2019 on Marburg virus vaccine clinical trials in humans and pre-clinical studies in non-human primates (NHP). Abstracts were reviewed by two authors. Relevant articles were reviewed in full. Discrepancies were resolved by a third author. Data abstracted included year, author, title, vaccine construct, number of subjects, efficacy, and demographics. Assessment for risk of bias was performed using the Syrcle tool for animal studies, and the Cochrane Collaboration risk of bias tool for human studies. RESULTS: 101 articles were identified; 27 were related to Marburg vaccines. After full text review, 21 articles were selected. 215 human subjects were in three phase 1 clinical trials, and 203 NHP in 18 studies. Vaccine constructs were DNA plasmids, recombinant vesicular stomatitis virus (VSV) vectors, adenovirus vectors, virus-like particles (VLP), among others. Two human phase 1 studies of DNA vaccines had 4 adverse effects requiring vaccine discontinuation among 128 participants and 31-80% immunogenicity. In NHP challenge studies, 100% survival was seen in 6 VSV vectored vaccines, 2 DNA vaccines, 2 VLP vaccines, and in 1 adenoviral vectored vaccine. CONCLUSION: In human trials, two Marburg DNA vaccines provided either low immunogenicity or a failure to elicit durable immunity. A variety of NHP candidate Marburg vaccines demonstrated favorable survival and immunogenicity parameters, to include VSV, VLP, and adenoviral vectored vaccines. Elevated binding antibodies appeared to be consistently associated with protection across the NHP challenge studies. Further human trials are needed to advance vaccines to limit the spread of this highly lethal virus.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Vacinas Virais , Animais , Humanos , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA