RESUMO
Hydroxyapatite (HA) derived from salmon bone byproducts is used as a green support for the nanostructured nickel catalysts applied in the methanation of carbon dioxide (CO2). Undoped nickel catalysts and various ceria-doped nickel supported on hydroxyapatite (HA) were prepared by coimpregnation. Characteristics of the as-prepared catalysts were investigated by the various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), hydrogen temperature-programmed reduction (H2-TPR), carbon dioxide temperature-programmed desorption (CO2-TPD), and energy-dispersive X-ray spectroscopy (EDX). The catalyst activity was assessed throughout CO2 methanation in the low-temperature range of 225-350 °C with the molar ratio of H2/CO2 = 4/1. The function of HA and ceria provided a high dispersity of nickel particles over the catalyst surface with the size range of 24.5-25.8 nm, leading to improvement in the reduction and CO2 adsorption capacity of the catalysts as well as enhancing the catalytic efficiency in CO2 methanation. The 10Ni/HA catalyst reduced at suitable conditions of 400 °C for 2 h showed the highest catalytic performance among the tested catalysts. CO2 conversion and CH4 selectivity reached 76.6 and 100% at a reaction temperature of 350 °C, respectively. The results show that the Ni/HA sample doped with 6.0 wt % ceria was the best, with the CO2 conversion and the CH4 selectivity reaching 92.5% and 100%, respectively, at a reaction temperature of 325 °C.
RESUMO
Cellulosic aerogel from water hyacinth (WH) was synthesized to address the dual environmental issues of water hyacinth pollution and the production of a green material. Raw WH was treated with sodium hydroxide (NaOH) with microwave assistance and in combination with hydrogen peroxide (H2O2). The results from X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) showed that lignin and hemicellulose were markedly decreased after treatment, reducing from 24.02% hemicellulose and 5.67% lignin in raw WH to 8.32 and 1.92%, respectively. Cellulose aerogel from the pretreated WH had a high porosity of 98.8% with a density of 0.0162 g·cm-3 and a low thermal conductivity of 0.030 W·m-1·K-1. After modification with methyl trimethoxysilane (MTMS) to produce a highly hydrophobic material, WH aerogel exhibited high stability for oil absorption at a capacity of 43.3, 43.15, 40.40, and 41.88 (g·g-1) with diesel oil (DO), motor oil (MO), and their mixture with water (DO + W and MO + W), respectively. The adsorption remained stable after 10 cycles.