Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432618

RESUMO

The ketone bodies (KBs) ß-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, ß-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.


Assuntos
Dieta Cetogênica , Neoplasias , Humanos , Ácido 3-Hidroxibutírico , Corpos Cetônicos/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
2.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077072

RESUMO

Compound C (CompC), an inhibitor of AMP-activated protein kinase, reduces the viability of various renal carcinoma cells. The molecular mechanism underlying anti-proliferative effect was investigated by flow cytometry and western blot analysis in Renca cells. Its effect on the growth of Renca xenografts was also examined in a syngeneic BALB/c mouse model. Subsequent results demonstrated that CompC reduced platelet-derived growth factor receptor signaling pathways and increased ERK1/2 activation as well as reactive oxygen species (ROS) production. CompC also increased the level of active Wee1 tyrosine kinase (P-Ser642-Wee1) and the inactive form of Cdk1 (P-Tyr15-Cdk1) while reducing the level of active histone H3 (P-Ser10-H3). ROS-dependent ERK1/2 activation and sequential alterations in Wee1, Cdk1, and histone H3 might be responsible for the CompC-induced G2/M cell cycle arrest and cell viability reduction. In addition, CompC reduced the adhesion, migration, and invasion of Renca cells in the in vitro cell systems, and growth of Renca xenografts in the BALB/c mouse model. Taken together, the inhibition of in vivo tumor growth by CompC may be attributed to the blockage of cell cycle progression, adhesion, migration, and invasion of tumor cells. These findings suggest the therapeutic potential of CompC against tumor development and progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/patologia , Divisão Celular , Modelos Animais de Doenças , Histonas , Humanos , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
3.
Biology (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671902

RESUMO

Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled cells indicated apoptosis induction by treatment with BZ and CFZ. Apoptosis was evidenced by the activation of various caspases, including caspase 3, 8, 9, and 12. Treatment with BZ and CFZ induced endoplasmic reticulum (ER) stress, as indicated by an increase in eIF2α phosphorylation and the expression of ER stress-associated proteins, including GRP78, ATF6α, ATF4, XBP1, and CCAAT/enhancer-binding protein homologous protein. The effects of CFZ on ER stress and apoptosis were lower than that of BZ. Nevertheless, CFZ and BZ synergistically induced ER stress and apoptosis in B16-F1 cells. Furthermore, the combinational pharmacological interactions of BZ and CFZ against the growth of B16-F1 melanoma cells were assessed by calculating the combination index and dose-reduction index with the CompuSyn software. We found that the combination of CFZ and BZ at submaximal concentrations could obtain dose reduction by exerting synergistic inhibitory effects on cell growth. Moreover, this drug combination reduced tumor growth in C57BL/6 syngeneic mice. Taken together, these results suggest that CFZ in combination with BZ may be a beneficial and potential strategy for melanoma treatment.

4.
Neurotoxicology ; 71: 39-51, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508555

RESUMO

α-Naphthoflavone (αNF) is a prototype flavone, also known as a modulator of aryl hydrocarbon receptor (AhR). In the present study, we investigated the molecular mechanisms of αNF-induced cytotoxic effects in HT22 mouse hippocampal neuronal cells. αNF induced apoptotic cell death via activation of caspase-12 and -3 and increased expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by treatment with the ER stress inhibitor, salubrinal, or by CHOP siRNA transfection reduced αNF-induced cell death. αNF activated mitogen-activated protein kinases (MAPKs), such as p38, JNK, and ERK, and inhibition of MAPKs reduced αNF-induced CHOP expression and cell death. αNF also induced accumulation of reactive oxygen species (ROS) and an antioxidant, N-acetylcysteine, reduced αNF-induced MAPK phosphorylation, CHOP expression, and cell death. Furthermore, αNF activated c-Src kinase, and inhibition of c-Src by a kinase inhibitor, SU6656, or siRNA transfection reduced αNF-induced ROS accumulation, MAPK activation, CHOP expression, and cell death. Inhibition of AhR by an AhR antagonist, CH223191, and siRNA transfection of AhR and AhR nuclear translocator reduced αNF-induced AhR-responsive luciferase activity, CHOP expression, and cell death. Finally, we found that inhibition of c-Src and MAPKs reduced αNF-induced transcriptional activity of AhR. Taken together, these findings suggest that αNF induces apoptosis through ER stress via c-Src-, ROS-, MAPKs-, and AhR-dependent pathways in HT22 cells.


Assuntos
Apoptose , Benzoflavonas/metabolismo , Estresse do Retículo Endoplasmático , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA