Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell Environ ; 46(8): 2558-2574, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37267124

RESUMO

Sweet potato (Ipomoea batatas) is an important tuber crop, but also target of numerous insect pests. Intriguingly, the abundant storage protein in tubers, sporamin, has intrinsic trypsin protease inhibitory activity. In leaves, sporamin is induced by wounding or a volatile homoterpene and enhances insect resistance. While the signalling pathway leading to sporamin synthesis is partially established, the initial event, perception of a stress-related signal is still unknown. Here, we identified an IbLRR-RK1 that is induced upon wounding and herbivory, and related to peptide-elicitor receptors (PEPRs) from tomato and Arabidopsis. We also identified a gene encoding a precursor protein comprising a peptide ligand (IbPep1) for IbLRR-RK1. IbPep1 represents a distinct signal in sweet potato, which might work in a complementary and/or parallel pathway to the previously described hydroxyproline-rich systemin (HypSys) peptides to strengthen insect resistance. Notably, an interfamily compatibility in the Pep/PEPR system from Convolvulaceae and Solanaceae was identified.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Ligantes , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo
2.
Life (Basel) ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37374114

RESUMO

In cancer genomics research, gene expressions provide clues to gene regulations implicating patients' risk of survival. Gene expressions, however, fluctuate due to noises arising internally and externally, making their use to infer gene associations, hence regulation mechanisms, problematic. Here, we develop a new regression approach to model gene association networks while considering uncertain biological noises. In a series of simulation experiments accounting for varying levels of biological noises, the new method was shown to be robust and perform better than conventional regression methods, as judged by a number of statistical measures on unbiasedness, consistency and accuracy. Application to infer gene associations in germinal-center B cells led to the discovery of a three-by-two regulatory motif gene expression and a three-gene prognostic signature for diffuse large B-cell lymphoma.

3.
JACC Asia ; 2(3): 258-270, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36338407

RESUMO

Background: Pulmonary hypertension is a disabling and life-threatening cardiovascular disease. Early detection of elevated pulmonary artery pressure (ePAP) is needed for prompt diagnosis and treatment to avoid detrimental consequences of pulmonary hypertension. Objectives: This study sought to develop an artificial intelligence (AI)-enabled electrocardiogram (ECG) model to identify patients with ePAP and related prognostic implications. Methods: From a hospital-based ECG database, the authors extracted the first pairs of ECG and transthoracic echocardiography taken within 2 weeks of each other from 41,097 patients to develop an AI model for detecting ePAP (PAP > 50 mm Hg by transthoracic echocardiography). The model was evaluated on independent data sets, including an external cohort of patients from Japan. Results: Tests of 10-fold cross-validation neural-network deep learning showed that the area under the receiver-operating characteristic curve of the AI model was 0.88 (sensitivity 81.0%; specificity 79.6%) for detecting ePAP. The diagnostic performance was consistent across age, sex, and various comorbidities (diagnostic odds ratio >8 for most factors examined). At 6-year follow-up, the patients predicted by the AI model to have ePAP were independently associated with higher cardiovascular mortality (HR: 3.69). Similar diagnostic performance and prediction for cardiovascular mortality could be replicated in the external cohort. Conclusions: The ECG-based AI model identified patients with ePAP and predicted their future risk for cardiovascular mortality. This model could serve as a useful clinical test to identify patients with pulmonary hypertension so that treatment can be initiated early to improve their survival prognosis.

4.
Cell Death Dis ; 13(7): 619, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851582

RESUMO

Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Instabilidade Genômica , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Fosforilação/fisiologia , Fuso Acromático/genética , Fuso Acromático/metabolismo
5.
Front Oncol ; 12: 883437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719949

RESUMO

Background: Addition of oxaliplatin to adjuvant 5-FU has significantly improved the disease-free survival and served as the first line adjuvant chemotherapy in advanced colorectal cancer (CRC) patients. However, a fraction of patients remains refractory to oxaliplatin-based treatment. It is urgent to establish a preclinical platform to predict the responsiveness toward oxaliplatin in CRC patients as well as to improve the efficacy in the resistant patients. Methods: A living biobank of organoid lines were established from advanced CRC patients. Oxaliplatin sensitivity was assessed in patient-derived tumor organoids (PDOs) in vitro and in PDO-xenografted tumors in mice. Based on in vitro oxaliplatin IC50 values, PDOs were classified into either oxaliplatin-resistant (OR) or oxaliplatin-sensitive (OS) PDOs. The outcomes of patients undergone oxaliplatin-based treatment was followed. RNA-sequencing and bioinformatics tools were performed for molecular profiling of OR and OS PDOs. Oxaliplatin response signatures were submitted to Connectivity Map algorithm to identify perturbagens that may antagonize oxaliplatin resistance. Results: Oxaliplatin sensitivity in PDOs was shown to correlate to oxaliplatin-mediated inhibition on PDO xenograft tumors in mice, and parallelled clinical outcomes of CRC patients who received FOLFOX treatment. Molecular profiling of transcriptomes revealed oxaliplatin-resistant and -sensitive PDOs as two separate entities, each being characterized with distinct hallmarks and gene sets. Using Leave-One-Out Cross Validation algorithm and Logistic Regression model, 18 gene signatures were identified as predictive biomarkers for oxaliplatin response. Candidate drugs identified by oxaliplatin response signature-based strategies, including inhibitors targeting c-ABL and Notch pathway, DNA/RNA synthesis inhibitors, and HDAC inhibitors, were demonstrated to potently and effectively increase oxaliplatin sensitivity in the resistant PDOs. Conclusions: PDOs are useful in informing decision-making on oxaliplatin-based chemotherapy and in designing personalized chemotherapy in CRC patients.

6.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166088, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515676

RESUMO

Point mutation in alcohol dehydrogenase 2 (ALDH2), ALDH2*2 results in decreased catalytic enzyme activity and has been found to be associated with different human pathologies. Whether ALDH2*2 would induce cardiac remodeling and increase the attack of atrial fibrillation (AF) remains poorly understood. The present study evaluated the effect of ALDH2*2 mutation on AF susceptibility and unravelled the underlying mechanisms using a multi-omics approach including whole-genome gene expression and proteomics analysis. The in-vivo electrophysiological study showed an increase in the incidence and reduction in the threshold of AF for the mutant mice heterozygous for ALDH2*2 as compared to the wild type littermates. The microarray analysis revealed a reduction in the retinoic acid signals which was accompanied by a downstream reduction in the expression of voltage-gated Na+ channels (SCN5A). The treatment of an antagonist for retinoic acid receptor resulted in a decrease in SCN5A transcript levels. The integrated analysis of the transcriptome and proteome data showed a dysregulation of fatty acid ß-oxidation, adenosine triphosphate synthesis via electron transport chain, and activated oxidative responses in the mitochondria. Oral administration of Coenzyme Q10, an essential co-factor known to meliorate mitochondrial oxidative stress and preserve bioenergetics, conferred a protection against AF attack in the mutant ALDH2*2 mice. The multi-omics approach showed the unique pathophysiology mechanisms of concurrent dysregulated SCN5A channel and mitochondrial bioenergetics in AF. This inspired the development of a personalized therapeutic agent, Coenzyme Q10, to protect against AF attack in humans characterized by ALDH2*2 genotype.


Assuntos
Aldeído-Desidrogenase Mitocondrial/fisiologia , Fibrilação Atrial/patologia , Metabolismo Energético , Mitocôndrias/patologia , Mutação , Canais de Sódio/metabolismo , Transcriptoma , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Redes Reguladoras de Genes , Masculino , Camundongos , Mitocôndrias/metabolismo , Transdução de Sinais , Canais de Sódio/genética
7.
Chem Asian J ; 15(22): 3861-3872, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32996252

RESUMO

Cancer cells have dramatically increased demands for energy as well as biosynthetic precursors to fuel their restless growth. Enhanced glutaminolysis is a hallmark of cancer metabolism which fulfills these needs. Two glutamine transporters, SLC1A5 and SLC38A2, have been previously reported to promote glutaminolysis in cancer with controversial perspectives. In this study, we harnessed the proximity labeling reaction to map the protein interactome using mass spectrometry-based proteomics and discovered a potential protein-protein interaction between SLC1A5 and SLC38A2. The SLC1A5/SLC38A2 interaction was further confirmed by bimolecular fluorescence complementation assay. We further investigated the metabolic influence of SLC1A5 and SLC38A2 overexpression in human cells, respectively, and found that only SLC38A2, but not SLC1A5, resulted in a cancer-like metabolic profile, where the intracellular concentrations of essential amino acids and lactate were significantly increased as quantified by nuclear magnetic resonance spectroscopy. Finally, we analyzed the 5-year survival rates in a large pan-cancer cohort and found that the SLC1A5hi /SLC38A2lo group did not relate to a poor survival rate, whereas the SLC1A5lo /SLC38A2hi group significantly aggravated the lethality. Intriguingly, the SLC1A5hi /SLC38A2hi group resulted in an even worse prognosis, suggesting a cooperative effect between SLC1A5 and SCL38A2. Our data suggest that SLC38A2 plays a dominant role in reprogramming the cancer-like metabolism and promoting the cancer progression, whereas SLC1A5 may augment this effect when co-overexpressed with SLC38A2. We propose a model to explain the relationship between SLC1A5, SLC38A2 and SCL7A5, and discuss their impact on glutaminolysis and mTOR signaling.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Glutamina/metabolismo , Células HEK293 , Humanos , Neoplasias/diagnóstico , Prognóstico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Cells ; 9(2)2020 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050430

RESUMO

Human Toll-like receptor (TLR) signaling plays a vital role in intestinal inflammation by activating the NF-B pathway. By querying GENT2 datasets, we identified the gene expression level of TLR2 and TLR4 as being substantially increased in colorectal cancer. Introduction of shRNAs for TLR4 but not TLR2 dramatically recovered disialyl Lewisa and sialyl 6-sulfo Lewisx glycans, which are preferentially expressed in non-malignant colonic epithelial cells and could serve as ligands for the immunosuppressive molecule Siglec-7. We screened several TLR4 ligands and found that among them BGN is highly expressed in cancers and is involved in the epigenetic silencing of Siglec-7 ligands. Suppression of BGN expression substantially downregulated NF-B activity and the marker H3K27me3 in the promoter regions of the SLC26A2 and ST6GalNAc6 genes, which are involved in the synthesis of those glycans, and restored expression of normal glycans as well as Siglec-7 binding activities. We show that in the presence of TLR4, inflammatory stimuli initiate a positive loop involving NF-B that activates BGN and further enhances TLR4 activity. Present findings indicate a putative mechanism for the promotion of carcinogenesis by loss of immunosuppressive ligands by the BGN/TLR4/ NF-B pathway.


Assuntos
Biglicano/metabolismo , Neoplasias do Colo/genética , Epigênese Genética , Inativação Gênica , Terapia de Imunossupressão , NF-kappa B/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Receptor 4 Toll-Like/metabolismo , Sequência de Bases , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos , Ligantes , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
9.
Cancer Med ; 8(13): 5850-5861, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407494

RESUMO

The overall survival rates for lung cancer remain unsatisfactorily low, even for patients with biomarkers for which target therapies or immunotherapies are recommended. Better identification of at-risk patients is needed to achieve more effective personalized treatment. Here, we derived a risk-stratifying gene signature consisting of five genes that had the greatest differential expression by stage from lung adenocarcinoma (LUAD) transcriptomes. The new gene signature enabled survival prognosis for multiple LUAD datasets from different platforms of transcriptomics and risk stratification for patients with and without a mutation in TP53 or EGFR, with high and low levels of PD-L1, and with and without adjuvant chemotherapy treatment. Using these evaluations, it was also shown to be more robust compared to several other gene signatures. Functional analysis of the five genes and their protein-protein interaction partners indicated that they are functionally enriched in cell cycle, endocytosis, and EGFR regulation, which are biological processes associated with lung cancer and drug resistance. Extensive discussions on related experimental studies suggest that the five genes are novel and sensible targets for developing new drugs and/or tackling drug resistance problems for LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Mutação , Estadiamento de Neoplasias , Prognóstico , Medição de Risco , Análise de Sobrevida
10.
Biochim Biophys Acta Gene Regul Mech ; 1862(2): 173-183, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716533

RESUMO

Normal colonic epithelial cells express sialyl 6-sulfo Lewisx and disialyl Lewisa on their cell surface, which are ligands for the immunosuppressive molecule Siglec-7. Expression of these normal glycans is frequently lost upon malignant transformation by silencing DTDST and ST6GalNAc6 at the early stage of colorectal carcinogenesis, and leads to production of inflammatory mediators that facilitate carcinogenesis. Indeed, by querying The Cancer Genome Atlas datasets, we confirmed that the level of DTDST or ST6GalNAc6 mRNA is substantially decreased at the early stage of colorectal carcinogenesis. Cultured colon cancer cell lines were used in this study including DLD-1, HT-29, LS174T and SW620. Their promoter regions were strongly marked by repressive mark H3K27me3, catalyzed by EZH2 that was markedly upregulated in early stage of colorectal carcinogenesis. Suppression of EZH2 substantially downregulated H3K27me3 mark and upregulated DTDST and ST6GalNAc6 as well as expression of normal glycans and Siglec-binding activities. Transcription factor YY1 was vital for the recruitment of PRC2-containing EZH2 to both promoters. Inhibition of NF-κB substantially reduced EZH2 transcription and restored their mRNAs as well as the production of normal Siglec ligand glycans in the results obtained from in vitro studies on cultured colon cancer cell lines. These findings provide a putative mechanism for promotion of carcinogenesis by loss of immunosuppressive molecules by epigenetic silencing through NF-κB-mediated EZH2/YY1 axis.


Assuntos
Neoplasias do Colo/etiologia , Epigênese Genética , Inativação Gênica , Polissacarídeos/biossíntese , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Ligantes , NF-kappa B/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Fator de Transcrição YY1/metabolismo
11.
Sci Rep ; 7(1): 4613, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676638

RESUMO

JAK2 activation is crucial for cytokine receptor signal transduction and leukemogenesis. However, the underlying processes that lead to full activation of JAK2 are unclear. Here, we report a positive role for ubiquitination of JAK2 during GM-CSF-induced activation. Upon GM-CSF stimulation, JAK2 ubiquitination is significantly enhanced through K63-linked poly-ubiquitination. Studies employing both knockout and overexpression of Cbl, an E3 ubiquitin ligase, led to the conclusion that Cbl specifically promotes JAK2 ubiquitination, and this was further confirmed in vitro using a Cbl ubiquitination assay. Moreover, following GM-CSF stimulation, the levels of phospho-JAK2 and -STAT5 and a STAT5 luciferase reporter assay were all reduced in Cbl knockout cells and this effect could be rescued by Cbl expression. Mechanistically, Cbl can interact with, and ubiquitinate JAK2 FERM and kinase domains via the Cbl TKB domain. Using lysine-to-arginine site-directed mutagenesis, K970 in the kinase domain of JAK2 was identified as the ubiquitination site important for promoting full JAK2 activation by Cbl via K63-conjugated poly-ubiquitination. Our study suggests that GM-CSF-induced JAK2 activation is enhanced by Cbl-mediated ubiquitination of JAK2. Targeting ubiquitination of JAK2 might offer a novel therapeutic strategy against JAK2-mediated disorders.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Janus Quinase 2/metabolismo , Lisina/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Janus Quinase 2/química , Janus Quinase 2/genética , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Ligação Proteica , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
12.
Eur J Med Chem ; 127: 235-249, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28064078

RESUMO

A novel series of bis(hydroxymethyl)indolizino[8,7-b]indole hybrids composed of ß-carboline (topoisomerase I/II inhibition) and bis(hydroxymethyl)pyrrole (DNA cross-linking) are synthesized for antitumor evaluation. Of tumor cell lines tested, small cell lung cancer (SCLC) cell lines are the most sensitive to the newly synthesized compounds. These hybrids induce cell cycle arrest at the G2/M phase, trigger tumor cell apoptotic death, and display diverse mechanisms of action involving topoisomerase II (Topo II) inhibition and induction of DNA cross-linking. Intriguingly, the substituent at N11 (H or Me) plays a critical role in modulating Topo II inhibition and DNA cross-linking activities. N11-Me derivatives predispose to induce DNA crosslinks, whereas N11-H derivatives potently inhibit Topo II. Computational analysis implicates that N11-Me restrict the torsion angles of the two adjacent OH on pyrrole resulting in a favorable of DNA cross-linking. Among these hybrids, compound 17a with N11-H is more effective than cisplatin and etoposide, but as potent as irinotecan, against the growth of SCLC H526 cells in xenograft model.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Desenho de Fármacos , Indóis/síntese química , Indóis/farmacologia , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Indóis/química , Indóis/metabolismo , Camundongos , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/metabolismo , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
PLoS Comput Biol ; 13(1): e1005368, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129350

RESUMO

Host factors that facilitate viral entry into cells can, in principle, be identified from a virus-host protein interaction network, but for most viruses information for such a network is limited. To help fill this void, we developed a bioinformatics approach and applied it to hepatitis C virus (HCV) infection, which is a current concern for global health. Using this approach, we identified short linear sequence motifs, conserved in the envelope proteins of HCV (E1/E2), that potentially can bind human proteins present on the surface of hepatocytes so as to construct an HCV (envelope)-host protein interaction network. Gene Ontology functional and KEGG pathway analyses showed that the identified host proteins are enriched in cell entry and carcinogenesis functionalities. The validity of our results is supported by much published experimental data. Our general approach should be useful when developing antiviral agents, particularly those that target virus-host interactions.


Assuntos
Hepacivirus/química , Hepacivirus/patogenicidade , Hepatite C/virologia , Interações Hospedeiro-Patógeno/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Internalização do Vírus , Biologia Computacional , Hepacivirus/genética , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Mimetismo Molecular , Domínios e Motivos de Interação entre Proteínas/genética , Mapas de Interação de Proteínas
14.
Biochemistry ; 50(37): 7909-18, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21834515

RESUMO

A transmembrane domain (TMD) at the N-terminus of a membrane protein is a signal sequence that targets the protein to the endoplasmic reticulum (ER) membrane. Proline is found more frequently in TM helices compared to water-soluble helices. To investigate the effects of proline on protein translocation and integration in mammalian cells, we made proline substitutions throughout the TMD of dipeptidyl peptidase IV, a type II membrane protease with a single TMD at its N-terminus. The proteins were expressed and their capacities for targeting and integrating into the membrane were measured in both mammalian cells and in vitro translation systems. Three proline substitutions in the central region of the TMD resulted in various defects in membrane targeting and/or integration. The replacement of proline with other amino acids of similar hydrophobicity rescued both the translocation and anchoring defects of all three proline mutants, indicating that conformational change caused by proline is a determining factor. Increasing hydrophobicity of the TMD by replacing other residues with more hydrophobic residues also effectively reversed the translocation and integration defects. Intriguingly, increasing hydrophobicity at the C-terminal end of the TMD rescued much more effectively than it did at the N-terminal end. Thus, the effect of proline on translocation and integration of the TMD is not determined solely by its conformation and hydrophobicity, but also by the location of proline in the TMD, the location of highly hydrophobic residues, and the relative position of the proline to other proline residues in the TMD.


Assuntos
Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Retículo Endoplasmático/metabolismo , Prolina/genética , Prolina/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Dipeptidil Peptidase 4/química , Cães , Células HEK293 , Humanos , Dados de Sequência Molecular , Prolina/química , Transporte Proteico/fisiologia
15.
J Biochem ; 149(6): 685-92, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21288888

RESUMO

Fibroblast activation protein (FAP) is a prolyl-cleaving endopeptidase proposed as an anti-cancer drug target. It is necessary to define its cleavage-site specificity to facilitate the identification of its in vivo substrates and to understand its biological functions. We found that the previously identified substrate of FAP, α(2)-anti-plasmin, is not a robust substrate in vitro. Instead, an intracellular protein, SPRY2, is cleavable by FAP and more suitable for investigation of its substrate specificity in the context of the full-length globular protein. FAP prefers uncharged residues, including small or bulky hydrophobic amino acids, but not charged amino acids, especially acidic residue at P1', P3 and P4 sites. Molecular modelling analysis shows that the substrate-binding site of FAP is surrounded by multiple tyrosine residues and some negatively charged residues, which may exert least preference for substrates with acidic residues. This provides an explanation why FAP cannot cleave interleukins, which have a glutamate at either P4 or P2', despite their P3-P2-P1 sites being identical to SPRY2 or α-AP. Our study provided new information on FAP cleavage-site specificity, which differs from the data obtained by profiling with a peptide library or with the denatured protein, gelatin, as the substrate. Furthermore, our study suggests that negatively charged residues should be avoided when designing FAP inhibitors.


Assuntos
Gelatinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Células Cultivadas , Endopeptidases , Gelatinases/química , Gelatinases/isolamento & purificação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/isolamento & purificação , Especificidade por Substrato
16.
Protein Sci ; 19(9): 1627-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20572019

RESUMO

Dipeptidyl peptidase IV (DPP-IV) is a drug target in the treatment of human type II diabetes. It is a type II membrane protein with a single transmembrane domain (TMD) anchoring the extracellular catalytic domain to the membrane. DPP-IV is active as a dimer, with two dimer interacting surfaces located extracellularly. In this study, we demonstrate that the TM of DPP-IV promotes DPP-IV dimerization and rescues monomeric DPP-IV mutants into partial dimers, which is specific and irreplaceable by TMs of other type II membrane proteins. By bioluminescence resonance energy transfer (BRET) and peptide electrophoresis, we found that the TM domain of DPP-IV is dimerized in mammalian cells and in vitro. The TM dimer interaction is very stable, based on our results with TM site-directed mutagenesis. None of the mutations, including the introduction of two prolines, resulted in their complete disruption to monomers. However, these TM proline mutations result in a significant reduction of DPP-IV enzymatic activity, comparable to what is found with mutations near the active site. A systematic analysis of TM structures deposited in the Protein Data Bank showed that prolines in the TM generally produce much bigger kinking angles than occur in nonproline-containing TMs. Thus, the proline-dependent reduction in enzyme activity may result from propagated conformational changes from the TM to the extracellular active site. Our results demonstrate that TM dimerization and conformation contribute significantly to the structure and activity of DPP-IV. Optimal enzymatic activity of DPP-IV requires an optimal interaction of all three dimer interfaces, including its TM.


Assuntos
Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Sequência de Aminoácidos , Animais , Dipeptidil Peptidase 4/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Mol Cell ; 24(3): 341-54, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17081986

RESUMO

Small ubiquitin-like modifier (SUMO) modification has emerged as an important posttranslational control of protein functions. Daxx, a transcriptional corepressor, was reported to repress the transcriptional potential of several transcription factors and target to PML oncogenic domains (PODs) via SUMO-dependent interactions. The mechanism by which Daxx binds to sumoylated factors mediating transcriptional and subnuclear compartmental regulation remains unclear. Here, we define a SUMO-interacting motif (SIM) within Daxx and show it to be crucial for targeting Daxx to PODs and for transrepression of several sumoylated transcription factors, including glucocorticoid receptor (GR). In addition, the capability of Daxx SIM to bind SUMO also controls Daxx sumoylation. We further demonstrate that arsenic trioxide-induced sumoylation of PML correlates with a change of endogenous Daxx partitioning from GR-regulated gene promoter to PODs and a relief of Daxx repression on GR target gene expression. Our results provide mechanistic insights into Daxx in SUMO-dependent transcriptional control and subnuclear compartmentalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Trióxido de Arsênio , Arsenicais/farmacologia , Células COS , Proteínas de Transporte/química , Chlorocebus aethiops , Proteínas Correpressoras , Dexametasona/farmacologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Óxidos/farmacologia , Proteína da Leucemia Promielocítica , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo
18.
J Biol Chem ; 279(33): 34440-8, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15192109

RESUMO

We show herein that removal of the first 86 amino acids (aa) of the N terminus (designated N) of type VI adenylyl cyclase (ACVI) caused the resultant ACVI mutant (ACVI-DeltaA87) to be more greatly inhibited by a Galpha(i)-coupled receptor or activated Galpha(i) protein. Moreover, in vitro binding of the full-length N and C1a domain (designated C1a), which interacts with Galpha(i), was detected. A truncated N terminus (aa 1-86) also interacted with C1a, suggesting that the C1a-interacting region is located within aa 1-86. Mutation analyses further revealed that N might interact with C1a in the region (aa 434-505) where Galpha(i) is bound. Mutations of two residues (Leu-472 and Val-476) located in this N-binding region of C1a suppressed the interaction between recombinant N and C1a and markedly reduced Galpha(i)-mediated inhibition of ACVI-DeltaA87. Further biochemical analyses of the effect of internal mutations of Leu-472/Val-476 on Galpha(i)-mediated inhibition of wild-type ACVI and ACVI-DeltaA87 suggested that N modulates the Galpha(i)-mediated inhibition of ACVI via binding to C1a when the level of Galpha(i) is low (i.e. around the IC(50) value) and that a more complicated interfering mode results when the level of Galpha(i) is high (i.e. approximately 10- to 20-fold of the IC(50) value). Collectively, data presented herein suggest a novel function of the N terminus of ACVI in Galpha(i)-mediated regulation.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Western Blotting , Células CHO , Domínio Catalítico , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Subunidade alfa Gi2 de Proteína de Ligação ao GTP , Humanos , Concentração Inibidora 50 , Leucina/química , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transfecção , Valina/química
19.
J Biomed Sci ; 11(2): 239-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14966374

RESUMO

The 3C protease (3C(pro)) of enterovirus 71 (EV71) is a good molecular target for drug discovery. Notably, this protease was found to possess RNA-binding activity. The regions responsible for RNA binding were classified as 'KFRDI' (positions 82-86) and 'VGK' (positions 154-156) in 3C(pro) by mutagenesis study. Although the RNA-binding regions are structurally distinct from the catalytic site of EV71 3C(pro), mutations in the RNA-binding regions influenced 3C(pro) proteolytic activity. In contrast, mutations at the catalytic site had almost no influence on RNA binding ability. We identified certain mutations within 3C(pro) which abrogated both the RNA-binding activity of the expressed, recombinant, protease and the ability to rescue virus from an infectious full-length clone of EV71 (pEV71). Interestingly, mutation at position 84 from Arg(R) to Lys(K) was found to retain good RNA binding and proteolytic activity for the recombinant 3C(pro); however, no virus could be rescued when pEV71 with the R84K mutation was introduced into the infectious copy. Together, these results may provide useful information for using 3C(pro) as the molecular target to develop anti-EV71 agents.


Assuntos
Cisteína Endopeptidases/genética , Endopeptidases/genética , Enterovirus/enzimologia , Mutação de Sentido Incorreto , Proteínas Virais/genética , Proteases Virais 3C , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Enterovirus/genética , Enterovirus/crescimento & desenvolvimento , Ligação Proteica/genética , Estrutura Terciária de Proteína , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo
20.
J Biol Chem ; 278(18): 16073-81, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12566458

RESUMO

LIGHT (homologous to lymphotoxins, shows inducible expression, and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes) is a member of the tumor necrosis factor superfamily that can interact with lymphotoxin-beta receptor (LTbetaR), herpes virus entry mediator, and decoy receptor (DcR3). In our previous study, we showed that LIGHT is able to induce cell death via the non-death domain containing receptor LTbetaR to activate both caspase-dependent and caspase-independent pathway. In this study, a LIGHT mutein, LIGHT-R228E, was shown to exhibit similar binding specificity as wild type LIGHT to LTbetaR, but lose the ability to interact with herpes virus entry mediator. By using both LIGHT-R228E and agonistic anti-LTbetaR monoclonal antibody, we found that signaling triggered by LTbetaR alone is sufficient to activate both caspase-dependent and caspase-independent pathways. Cross-linking of LTbetaR is able to recruit TRAF3 and TRAF5 to activate ASK1, whereas its activity is inhibited by free radical scavenger carboxyfullerenes. The activation of ASK1 is independent of caspase-3 activation, and kinase-inactive ASK1-KE mutant can inhibit LTbetaR-mediated cell death. This suggests that ASK1 is one of the factors involved in the caspase-independent pathway of LTbetaR-induced cell death.


Assuntos
Apoptose , MAP Quinase Quinase Quinases/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Clorometilcetonas de Aminoácidos/farmacologia , Anticorpos Monoclonais/imunologia , Caspases/fisiologia , Humanos , Receptor beta de Linfotoxina , MAP Quinase Quinase Quinase 5 , Proteínas de Membrana/fisiologia , Proteínas/fisiologia , Espécies Reativas de Oxigênio , Fator 2 Associado a Receptor de TNF , Fator 3 Associado a Receptor de TNF , Células Tumorais Cultivadas , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA