Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956513

RESUMO

This study was conducted to evaluate the effects of different artificial light sources on the growth characteristics and various biological activities of the Atractylodes macrocephala x Atractylodes japonica hybrid cv. 'Dachul', which is highly useful for medicinal purposes. The plant had the largest biomass with a plant height of 38.20 ± 1.95 cm when treated with microwave electrodeless light (MEL). The chlorophyll content of the plants treated with fluorescent light (FL) was 53.93 ± 1.05 SPAD and was the highest. The antioxidant effect, determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), was the highest with 92.7 ± 0.2% in plants treated with light-emitting diode (LED)-green light. Total phenol and flavonoid contents were significantly higher with 19.7 ± 0.5 mg GAE/g and 40.2 ± 2.2 mg QE/g in the sample treated with LED-green light, respectively. For antimicrobial activity using the minimum inhibitory concentration (MIC) technique, the inhibitory ability against Escherichia coli was at 0.25 mg/mL under LED-green light treatment. The whitening activity using tyrosinase enzyme showed the highest tyrosinase inhibitory ability at 62.1 ± 1.2% of the above extract treated with MEL light. To confirm the immune activity in lipopolysaccharide (LPS)-induced RAW 264.7 cells, NO production of inflammation-related substances was measured. In addition, the inflammation-related genes iNOS (inducible nitric oxide synthase), COX-2 (cyclooxygenase-2), and TNF-α (tumor necrosis factor-α) in the same sample were confirmed using reverse transcriptase (RT)-PCR, and the result showed that gene expression was suppressed compared with that in the control group. It is expected that Dachul plants treated with LED-blue light will play an important role in enhancing intracellular anti-inflammatory activity. From these results, the effect for various biological activities appeared in a significantly diverse spectrum in response to different wavelengths of artificial light sources in Dachul.

2.
Transgenic Res ; 31(3): 381-389, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461371

RESUMO

The SAMS (S-adenosylmethionine synthetase) gene is known to play an important role in the mechanism of cold resistance, as overexpression of this gene results in phenotypic changes in T1-generation transgenic plants. Accordingly, this study was conducted to test the expression of the MsSAMS gene in T2-generation transgenic plants and to investigate the resistance of these plants and the function of the transgene in response to various environmental stresses. For the morphological analysis of T2-generation transgenic plants overexpressing the MsSAMS gene, observations using scanning electron microscopy (SEM) were performed. T2-generation transgenic plants were obtained by planting a total of 5 lines, and their characteristics were tested by comparisons with those of the control. SEM revealed that the thickest leaves were produced by the T6 transgenic line-161.24 ± 8.05 µm. The number of stomata ranged from 20.00 ± 2.65 to 34.00 ± 1.00 in the T2-generation transgenic plants, but the control had more stomata. Resistance to various factors, such as low temperature, drought, and oxidative stress, in the T2-generation transgenic plants was also confirmed. Under cold-stress conditions, the T6 transgenic line presented the lowest value (22.73%) of ion leakage, and under drought-stress conditions, compared with the control, the transgenic lines presented lower ion leakage after being treated with various concentrations of mannitol. Even under oxidative-stress conditions, the T2-generation transgenic plants presented ion leakage levels that were 32.91 ± 4.24 to 48.33 ± 3.54% lower than those of the control after treatment with various concentrations of methyl viologen. Regarding SAMS enzyme activity, as the duration of cold treatment increased, the activity in the transgenic plants tended to decrease and then increase. During 48 h of cold treatment, the control showed a decrease in SAM content, while the T2-generation transgenic plants presented an increase in SAM content, from 13.58 ± 1.04 to 22.75 ± 1.95 mg protein/g FW. The results suggest that the MsSAMS gene may be important to the mechanisms of resistance to oxidative and drought stresses in addition to its previously known association with cold resistance. Based on these results, it was suggested that the MsSAMS gene, whose expression is induced by cold stress, can serve as a marker of various responses to environmental stresses, because resistance to cold damage and various environmental stresses are stably inherited in the T2 generation.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Resposta ao Choque Frio/genética , Secas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA