Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 129: 108761, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38552302

RESUMO

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Assuntos
Oryza , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Endosperma/genética , Endosperma/metabolismo , Simulação por Computador , Amido/metabolismo , Subunidades Proteicas/metabolismo
2.
Plant J ; 97(6): 1073-1088, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30523657

RESUMO

The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.


Assuntos
Metabolismo dos Carboidratos , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Amido/biossíntese , Zea mays/genética , Regulação para Baixo , Endosperma/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Regulação para Cima
3.
J Exp Bot ; 67(18): 5557-5569, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588462

RESUMO

To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/fisiologia , Fosfoglucomutase/metabolismo , Pólen/metabolismo , Amido/biossíntese , Fertilidade/fisiologia , Glucose-1-Fosfato Adenililtransferase/fisiologia , Microscopia , Mutação , Oryza/enzimologia , Oryza/metabolismo , Fosfoglucomutase/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Plant Physiol ; 170(3): 1271-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754668

RESUMO

Previous studies showed that efforts to further elevate starch synthesis in rice (Oryza sativa) seeds overproducing ADP-glucose (ADPglc) were prevented by processes downstream of ADPglc synthesis. Here, we identified the major ADPglc transporter by studying the shrunken3 locus of the EM1093 rice line, which harbors a mutation in the BRITTLE1 (BT1) adenylate transporter (OsBt1) gene. Despite containing elevated ADPglc levels (approximately 10-fold) compared with the wild-type, EM1093 grains are small and shriveled due to the reduction in the amounts and size of starch granules. Increases in ADPglc levels in EM1093 were due to their poor uptake of ADP-[(14)C]glc by amyloplasts. To assess the potential role of BT1 as a rate-determining step in starch biosynthesis, the maize ZmBt1 gene was overexpressed in the wild-type and the GlgC (CS8) transgenic line expressing a bacterial glgC-TM gene. ADPglc transport assays indicated that transgenic lines expressing ZmBT1 alone or combined with GlgC exhibited higher rates of transport (approximately 2-fold), with the GlgC (CS8) and GlgC/ZmBT1 (CS8/AT5) lines showing elevated ADPglc levels in amyloplasts. These increases, however, did not lead to further enhancement in seed weights even when these plant lines were grown under elevated CO2. Overall, our results indicate that rice lines with enhanced ADPglc synthesis and import into amyloplasts reveal additional barriers within the stroma that restrict maximum carbon flow into starch.


Assuntos
Adenosina Difosfato Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Genes de Plantas , Proteínas Facilitadoras de Transporte de Glucose/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/metabolismo , Zea mays/enzimologia , Zea mays/genética
5.
FEBS Lett ; 589(13): 1444-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25953126

RESUMO

Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.


Assuntos
Calorimetria/métodos , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Western Blotting , Glucose-1-Fosfato Adenililtransferase/química , Glucofosfatos/química , Glucofosfatos/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Termodinâmica
6.
FEBS J ; 281(21): 4951-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25204204

RESUMO

The starch regulatory enzyme ADP-glucose pyrophosphorylase is activated by 3-phosphoglyceric acid (3-PGA) and inhibited by inorganic phosphate (Pi ). The activity of the plastid-localized enzyme is also subject to fine regulation by redox control in response to changing light and sugar levels. The less active oxidized form of the enzyme contains an inter-subunit disulfide bond formed between the pair of small subunit's Cys12 residues of the heterotetrameric enzyme. Although this cysteine residue is not conserved in the small subunits of cereal endosperm cytosolic AGPases, biochemical studies of the major rice endosperm enzyme indicate that the cytosolic isoform, like the plastidial enzymes, is subject to redox control. Kinetic analysis revealed that the reduced forms of the partially purified native and purified recombinant AGPases have 6- and 3.4-fold, respectively, more affinity to 3-PGA, rendering the enzymes more active at lower 3-PGA concentration than the non-reduced enzyme. Truncation of the large subunit by removal of N-terminal peptide resulted in a decrease in 3-PGA affinity and loss of redox response of the enzyme. Site-directed mutagenesis of the conserved cysteine residues at the N-terminal of the large subunit showed that C47 and C58, but not C12, are essential for proper redox response of the enzyme. Overall, our results show that the major rice endosperm AGPase activity is controlled by a combination of allosteric regulation and redox control, the latter through modification of the large subunit instead of the small subunit as evident in the plastid-localized enzyme.


Assuntos
Glucose-1-Fosfato Adenililtransferase/química , Oryza/enzimologia , Proteínas de Plantas/química , Regulação Alostérica , Substituição de Aminoácidos , Sequência Conservada , Cistina/análise , Citosol/enzimologia , Endosperma/enzimologia , Genes de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Ácidos Glicéricos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Deleção de Sequência , Relação Estrutura-Atividade
7.
Plant Cell Physiol ; 55(6): 1169-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747952

RESUMO

Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Oryza/enzimologia , Amido/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Catálise , Códon sem Sentido , Endosperma/enzimologia , Endosperma/genética , Glucose-1-Fosfato Adenililtransferase/isolamento & purificação , Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas , Cinética , Modelos Estruturais , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Polimerização , Proteínas Recombinantes , Sementes/enzimologia , Sementes/genética , Alinhamento de Sequência
8.
Biosci Biotechnol Biochem ; 77(9): 1854-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018661

RESUMO

The higher plant ADP-glucose (ADPG) pyrophosphorylase (AGPase), composed of two small subunits and two large subunits (LSs), produces ADPG, the sole substrate for starch biosynthesis from α-D-glucose 1-phosphate and ATP. This enzyme controls a key step in starch synthesis as its catalytic activity is activated by 3-phosphoglycerate (3-PGA) and inhibited by orthophosphate (Pi). Previously, two mutations in the LS of potato AGPase (PLS), PLS-E38K and PLS-G101N, were found to increase sensitivity to 3-PGA activation and tolerance to Pi inhibition. In the present study, the double mutated enzyme (PLS-E38K/G101N) was evaluated. In a complementation assay of ADPG synthesis in an Escherichia coli mutant defective in the synthesis of ADPG, expression of PLS-E38K/G101N mediated higher glycogen production than wild-type potato AGPase (PLS-WT) and the single mutant enzymes, PLS-E38K and PLS-G101N, individually. Purified PLS-E38K/G101N showed higher sensitivity to 3-PGA activation and tolerance to Pi inhibition than PLS-E38K or PLS-G101N. Moreover, the enzyme activities of PLS-E38K, PLS-G101N, and PLS-E38K/G101N were more readily stimulated by other major phosphate-ester metabolites, such as fructose 6-phosphate, fructose 2,6-bisphosphate, and ribose 5-phosphate, than was that of PLS-WT. Hence, although the specific enzyme activities of the LS mutants toward 3-PGA were impaired to some extent by the mutations, our results suggest that their enhanced allosteric regulatory properties and the broadened effector selectivity gained by the same mutations not only offset the lowered enzyme catalytic turnover rates but also increase the net performance of potato AGPase in vivo in view of increased glycogen production in bacterial cells.


Assuntos
Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Regulação Alostérica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose-1-Fosfato Adenililtransferase/genética , Ácidos Glicéricos/farmacologia , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
Arch Biochem Biophys ; 537(2): 210-6, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23906662

RESUMO

ADP-glucose pyrophosphorylase (AGPase) is highly regulated by allosteric effectors acting both positively and negatively. Enzymes from various sources differ, however, in the mechanism of allosteric regulation. Here, we determined how the effector, inorganic phosphate (Pi), functions in the presence and absence of saturating amounts of the activator, 3-phosphoglyceric acid (3-PGA). This regulation was examined in the maize endosperm enzyme, the oxidized and reduced forms of the potato tuber enzyme as well as a small subunit chimeric AGPase (MP), which contains both maize endosperm and potato tuber sequences paired with a wild-type maize large subunit. These data, combined with our previous kinetic studies of these enzymes led to a model of Pi inhibition for the various enzymes. The Pi inhibition data suggest that while the maize enzyme contains a single effector site that binds both 3-PGA and Pi, the other enzymes exhibit more complex behavior and most likely have at least two separate interacting binding sites for Pi. The possible physiological implications of the differences in Pi inhibition distinguishing the maize endosperm and potato tuber AGPases are discussed.


Assuntos
Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/classificação , Fosfatos/química , Tubérculos/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Solanum tuberosum/enzimologia , Zea mays/enzimologia , Ativação Enzimática , Inibidores Enzimáticos/química , Estabilidade Enzimática , Solanum tuberosum/genética
10.
J Biol Chem ; 283(11): 6640-7, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18199755

RESUMO

The higher plant ADP-glucose pyrophosphorylase is a heterotetramer consisting of two subunit types, which have evolved at different rates from a common ancestral gene. The potato tuber small subunit (SS) displays both catalytic and regulatory properties, whereas the exact role of the large subunit (LS), which contains substrate and effector binding sites, remains unresolved. We identified a mutation, S302N, which increased the solubility of the recombinant potato tuber LS and, in turn, enabling it to form a homotetrameric structure. The LS302N homotetramer possesses very little enzyme activity at a level 100-fold less than that seen for the unactivated SS homotetramer. Unlike the SS enzyme, however, the LS302N homotetramer enzyme is neither activated by the effector 3-phosphoglycerate nor inhibited by P(i). When combined with the catalytically silenced SS, S D143N, however, the LS302N-containing enzyme shows significantly enhanced catalytic activity and restored 3-PGA activation. This unmasking of catalytic and regulatory potential of the LS is conspicuously evident when the activities of the resurrected L(K41R.T51K.S302N) homotetramer are compared with its heterotetrameric form assembled with S D143N. Overall, these results indicate that the LS possesses catalytic and regulatory properties only when assembled with SS and that the net properties of the heterotetrameric enzyme is a product of subunit synergy.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/fisiologia , Mutação , Solanum tuberosum/enzimologia , Sítios de Ligação , Catálise , Dimerização , Relação Dose-Resposta a Droga , Ácidos Glicéricos/química , Glicogênio/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Relação Estrutura-Atividade
11.
Plant Cell Rep ; 27(1): 29-37, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17891401

RESUMO

The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the -2,015 bp 5'-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and beta-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5'-deletions up to the -963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.


Assuntos
Arabidopsis/genética , Perilla/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Arabidopsis/metabolismo , Northern Blotting , Western Blotting , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Genéticos , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/metabolismo
12.
Biochem Biophys Res Commun ; 362(2): 301-6, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17707339

RESUMO

ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step of starch synthesis in plants. The potato tuber enzyme contains a pair of catalytic small subunits (SSs) and a pair of non-catalytic large subunits (LSs). We have previously identified a LS mutant containing a P52L replacement, which rendered the enzyme with down-regulatory properties. To investigate the structure-function relationships between the two subunits with regard to allosteric regulation, putative SS mutants that could reverse the down-regulatory condition of LS(P52L) were identified by their ability to restore glycogen accumulation in an AGPase-deficient Escherichia coli glgC-strain. Two distinct LS-dependent classes, bona fide SS suppressors dependent on LS(P52L) but not LS(WT) and SS up-regulating allosteric mutants, were evident by kinetic analysis. These results indicate that both LS and SS have a regulatory function in controlling allosteric properties through enhancing cooperative subunit interactions.


Assuntos
Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Adenosina Difosfato Glucose/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Substituição de Aminoácidos , Sítios de Ligação/genética , Catálise/efeitos dos fármacos , Escherichia coli/genética , Glucose-1-Fosfato Adenililtransferase/genética , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Ácidos Glicéricos/farmacologia , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Tubérculos/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Relação Estrutura-Atividade
13.
Plant Mol Biol ; 65(4): 531-46, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17406793

RESUMO

ADP-glucose pyrophosphorylase (AGP) catalyzes the first committed step of starch biosynthesis in higher plants. To identify AGP isoforms essential for this biosynthetic process in sink and source tissues of rice plants, we analyzed the rice AGP gene family which consists of two genes, OsAGPS1 and OsAGPS2, encoding small subunits (SSU) and four genes, OsAGPL1, OsAGPL2, OsAGPL3 and OsAGPL4, encoding large subunits (LSU) of this enzyme heterotetrameric complex. Subcellular localization studies using green fluorescent protein (GFP) fusion constructs indicate that OsAGPS2a, the product of the leaf-preferential transcript of OsAGPS2, and OsAGPS1, OsAGPL1, OsAGPL3, and OsAGPL4 are plastid-targeted isoforms. In contrast, two isoforms, SSU OsAGPS2b which is a product of a seed-specific transcript of OsAGPS2, and LSU OsAGPL2, are localized in the cytosol. Analysis of osagps2 and osagpl2 mutants revealed that a lesion of one of the two cytosolic isoforms, OsAGPL2 and OsAGPS2b, causes a shrunken endosperm due to a remarkable reduction in starch synthesis. In leaves, however, only the osagps2 mutant appears to severely reduce the transitory starch content. Interestingly, the osagps2 mutant was indistinguishable from wild type during vegetative plant growth. Western blot analysis of the osagp mutants and wild type plants demonstrated that OsAGPS2a is an SSU isoform mainly present in leaves, and that OsAGPS2b and OsAGPL2 are the major SSU and LSU isoforms, respectively, in the endosperm. Finally, we propose a spatiotemporal complex model of OsAGP SSU and LSU isoforms in leaves and in developing endosperm of rice plants.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas/metabolismo , Oryza/enzimologia , Folhas de Planta/enzimologia , Sementes/enzimologia , Amido/biossíntese , Sequência de Bases , Western Blotting , Primers do DNA , Teste de Complementação Genética , Mutagênese Insercional , Oryza/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
14.
Phytochemistry ; 68(4): 464-77, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17207506

RESUMO

ADP-glucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis, is composed of a pair of catalytic small subunits (SSs) and a pair of catalytically disabled large subunits (LSs). The N-terminal region of the LS has been known to be essential for the allosteric regulatory properties of the heterotetrameric enzyme. To gain further insight on the role of this region and the LS itself in enzyme function, the six proline residues found in the N-terminal region of the potato tuber AGPase were subjected to scanning mutagenesis. The wildtype and various mutant heterotetramers were expressed using our newly developed host-vector system, purified, and their kinetic parameters assessed. While P(17)L, P(26)L, and P(55)L mutations only moderately affected the kinetic properties, P(52)L and P(66)L gave rise to significant and contrasting changes in allosteric properties: P(66)L enzyme displayed up-regulatory properties toward 3-PGA while the P(52)L enzyme had down-regulatory properties. Unlike the other mutants, however, various mutations at P(44) led to only moderate changes in regulatory properties, but had severely impaired catalytic rates, apparent substrate affinities, and responsiveness to metabolic effectors, indicating Pro-44 or the LS is essential for optimal catalysis and activation of the AGPase heterotetramer. The catalytic importance of the LS is further supported by photoaffinity labeling studies, which revealed that the LS binds ATP at the same efficiency as the SS. These results indicate that the LS, although considered having no catalytic activity, may mimic many of the catalytic events undertaken by the SS and, thereby, influences net catalysis of the heterotetrameric enzyme.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Dicroísmo Circular , Primers do DNA , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Plantas/genética , Plasmídeos , Prolina/análise , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
15.
FEBS Lett ; 580(28-29): 6741-8, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17137579

RESUMO

The ATP binding region in the catalytically inactive large subunit (LS) of the potato tuber ADP-glucose pyrophosphorylase was identified and investigated. Mutations at the ATP binding significantly affected not only the apparent affinities for ATP and Glc-1-P, and catalytic rate but also in many instances, sensitivity to 3-phosphoglycerate. The catalytic rates of the LS mutant enzymes correlated most strongly with changes in the affinity toward ATP, a relationship substantiated by photoaffinity labeling studies with azido-ATP analog. These results indicate that the LS, although catalytically defective, interacts cooperatively with the catalytic small subunit in binding substrates and effectors and, in turn, influencing net catalysis.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Solanum tuberosum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Ácidos Glicéricos/metabolismo , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Marcadores de Fotoafinidade , Estrutura Terciária de Proteína , Especificidade por Substrato
16.
FEBS Lett ; 579(5): 983-90, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15710379

RESUMO

The higher plant ADP-glucose pyrophosphorylase (AGPase) is a heterotetramer consisting of two regulatory large subunits (LSs) and two catalytic small subunits (SSs). To further characterize the roles of these subunits in determining enzyme function, different combinations of wildtype LS (LWT) and variant forms (LUpReg1, LM345) were co-expressed with wildtype SS (SWT) and variant forms (STG-15 and Sdevo330) and their enzyme properties compared to those measured for the heterotetrameric wildtype enzyme and SS homotetrameric enzymes. Analysis of the allosteric regulatory properties of the various enzymes indicates that although the LS is required for optimal activation by 3-phosphoglyceric acid and resistance to Pi, the overall allosteric regulatory and kinetic properties are specified by both subunits. Our results show that the regulatory and kinetic properties of AGPase are not simply due to the LS modulating the properties of the SS but, instead, are a product of synergistic interaction between the two subunits.


Assuntos
Nucleotidiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Regulação Alostérica , Catálise , Ativação Enzimática , Expressão Gênica , Glucose-1-Fosfato Adenililtransferase , Cinética , Mutação/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Plantas/classificação , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
17.
Protein Expr Purif ; 38(1): 99-107, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15477087

RESUMO

In an attempt to obtain facile methods to purify the heterotetrameric ADP-glucose pyrophosphorylase (AGPase), polyhistidine tags were attached to either the large (LS) or small (SS) subunits of this oligomeric enzyme. The addition of polyhistidine tag to the N-terminus of the LS or SS and co-expression with its unmodified counterpart subunit resulted in substantial induction of enzyme activity. In contrast, attachment of a polyhistidine-containing peptide through the use of a commercially available pET vector or addition of polyhistidine tags to the C-terminal ends of either subunit resulted in poor expression and/or production of enzyme activity. Preliminary experiment showed that these polyhistidine N-terminal-tagged enzymes interacted with Ni-NTA-agarose, indicating that immobilized metal affinity chromatography (IMAC) would be useful for efficient purification of the heterotetrameric AGPases. When ion-exchange chromatography step was employed prior to the IMAC, the polyhistidine-tagged AGPases were purified to near homogeneity. Comparison of kinetic parameters between AGPases with and without the polyhistidine tags revealed that attachment of the polyhistidine did not alter the allosteric and catalytic properties of the enzymes. These results indicate that polyhistidine tags will be useful for the rapid purification of preparative amounts of AGPases for biochemical and physical studies.


Assuntos
Cromatografia de Afinidade/métodos , Histidina/química , Nucleotidiltransferases/isolamento & purificação , Solanum tuberosum/enzimologia , Meios de Cultura , Glucose-1-Fosfato Adenililtransferase , Cinética , Nucleotidiltransferases/química , Oligonucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA