Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Microbiol Spectr ; 9(3): e0067221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817278

RESUMO

Here, we aimed to investigate the diagnostic value of a serological assay using the nucleocapsid protein developed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and evaluated its performance using three commercial enzyme-linked immunosorbent assays (ELISAs), namely, Standard E 2019 novel coronavirus disease (COVID-19) total antibody (Ab) ELISA (SD Biosensor), and EDI novel coronavirus COVID-19 IgG and IgM ELISA. A recombinant nucleocapsid protein (rNP) was expressed from plants and Escherichia coli for the detection of serum total Ab. We prospectively collected 141 serum samples from 32 patients with reverse transcription-PCR (RT-PCR)-confirmed COVID-19 and determined the sensitivity and dynamics of their total Ab response. Specificity was evaluated using 158 prepandemic samples. To validate the assays, we evaluated the performance using two different cutoff values. The sensitivity and specificity for each assay were as follows: 92.91% and 94.30% (plant-rNP), 83.69% and 98.73% (SD Biosensor), 75.89% and 98.10% (E. coli-rNP), 76.47% and 100% (EDI-IgG), and 80.39% and 80% (EDI-IgM). The plant-based rNP showed the highest sensitivity and area under the receiver operating characteristic (ROC) curve (0.980) among all the assays (P < 0.05). The seroconversion rate for total Ab increased sequentially with disease progression, with a sensitivity of 100% after 10 to 12 days of post-symptom onset (PSO) for both rNP-plant-based and SD Biosensor ELISAs. After 2 weeks of PSO, the seroconversion rates were >80% and 100% for EDI-IgM and EDI-IgG ELISA, respectively. Seroconversion occurred earlier with rNP plant-based ELISA (5 days PSO) compared with E. coli-based (7 days PSO) and SD Biosensor (8 days PSO) ELISA. We determined that rNP produced in plants enables the robust detection of SARS-CoV-2 total Abs. The assay can be used for serosurvey and complementary diagnosis of COVID-19. IMPORTANCE At present, the principal diagnostic methods for COVID-19 comprise the identification of viral nucleic acid by genetic approaches, including PCR-based techniques or next-generation sequencing. However, there is an urgent need for validated serological assays which are crucial for the understanding of immune responses against SARS-CoV-2. In this study, a highly sensitive and specific serological antibody assay was developed for the detection of SARS-CoV-2 with an overall accuracy of 93.56% using a recombinant nucleoprotein expressed from plants.


Assuntos
Anticorpos Antivirais/sangue , Teste para COVID-19/métodos , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas do Nucleocapsídeo/imunologia , Proteínas de Plantas/imunologia , Escherichia coli/genética , Humanos , Imunoglobulina G , Imunoglobulina M , Nucleocapsídeo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Soroconversão , Nicotiana/genética
2.
Arch Pharm Res ; 42(4): 319-325, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30599056

RESUMO

Folate is the generic term for both naturally occurring food folate and folic acid, the fully oxidized monoglutamate form of the vitamin that is used in dietary supplements and fortified foods. It is a water-soluble vitamin B9 and is important for health, growth, and development. As a precursor of various cofactors, folate is required for one-carbon donors in the synthesis of DNA bases and other essential biomolecules. A lack of dietary folate can lead to folate deficiency and can therefore result in several health problems, including macrocytic anemia, elevated plasma homocysteine, cardiovascular disease, birth defects, carcinogenesis, muscle weakness, and difficulty in walking. Several studies have implied that folate might exert a positive effect on skeletal muscle development. However, the precise effects of folate in skeletal muscle development are still poorly understood. Thus, this review provides an updated discussion of the roles of folate in skeletal muscle cell development and the effects of folic acid supplementation on the functions of skeletal muscle cells.


Assuntos
Ácido Fólico/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo
3.
Oncol Rep ; 38(3): 1783-1789, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28731136

RESUMO

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and cause of cancer-related deaths. Despite advancements in conventional therapeutic approaches to CRC, most patients with CRC die of their disease. There is a need to develop novel therapeutic agents for this malignancy. Therefore, the present study aimed to examine the anticancer effects and elucidate the underlying mechanism of MHY451 in HCT116 human colorectal cancer cells. Treatment with MHY451 inhibited cell growth in a time- and concentration-dependent manner. MHY451 increased the accumulation of cell cycle progression at the G2/M phase. This agent decreased the protein level of cyclin B1 and its activating partners, Cdc25c and Cdc2, whereas it increased the cell cycle inhibitor p21WAF/CIP. The induction of apoptosis was observed by decreased viability, cleavage of poly(ADP-ribose) polymerase (PARP), alteration in the ratio of Bax/Bcl-2 protein expression and reduction of procaspase-8 and -9. Pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, inhibited MHY451-induced apoptosis, indicating that apoptotic cell death by MHY451 was mediated through caspases. Moreover, the apoptotic effect of MHY451 was reactive oxygen species (ROS)-dependent, evidenced by the inhibition of MHY451-induced PARP cleavage and ROS generation by N-acetylcysteine-induced ROS scavenging. Taken together, these results demonstrate that MHY451 exerts anticancer effects by regulating the cell cycle, inducing apoptosis through caspase activation and generating ROS. These results suggest that MHY451 has considerable potential for chemoprevention or treatment of CRC or both.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina B1/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína X Associada a bcl-2/metabolismo
4.
Int J Oncol ; 51(2): 715-723, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656256

RESUMO

A synthetic analogue of resveratrol, 4-(6-hydroxy-2-naphtyl)-1,3-benzenediol (HS-1793), with improved photosensitivity and stability profiles, has been recently reported to exert anticancer activity on various cancer cells. However, the molecular mechanism of action and in vivo efficacy of HS-1793 in breast cancer cells have not been fully investigated. In the present study, we evaluated the effect of HS-1793 on hypoxia-inducible factor-1α (HIF-1α), which drives angiogenesis and the growth of solid tumors, in addition to the in vivo therapeutic effects of HS-1793 on breast cancer cells. HS-1793 was found to inhibit hypoxia (1.0% oxygen)-induced HIF-1α expression at the protein level, and its inhibitory effect was more potent than that of resveratrol in MCF-7 and MDA-MB-231 breast cancer cells. Furthermore, HS-1793 reduced the secretion and mRNA expression of vascular endothelial growth factor (VEGF), a key mediator of HIF-1-driven angiogenesis, without affecting cell viability. To evaluate the anticancer effects of HS-1793 in vivo, triple-negative MDA-MB-231 breast cancer xenografts were established in nude mice. HS-1793 significantly suppressed the growth of breast cancer tumor xenografts, without any apparent toxicity. Additionally, decreases in Ki-67, a proliferation index marker, and CD31, a biomarker of microvessel density, were observed in the tumor tissue. Expression of HIF-1 and VEGF was also downregulated in xenograft tumors treated with HS-1793. These in vivo results reinforce the improved anticancer activity of HS-1793 when compared with that of resveratrol. Overall, the present study suggests that the synthetic resveratrol analogue HS-1793 is a potent antitumor agent that inhibits tumor growth via the regulation of HIF-1, and demonstrates significant therapeutic potential for solid cancers.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Naftóis/administração & dosagem , Resorcinóis/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Oncol ; 47(6): 2226-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26498863

RESUMO

The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.


Assuntos
Anticarcinógenos/farmacologia , Neoplasias do Colo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Isotiocianatos/farmacologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Western Blotting , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Ensaio de Imunoadsorção Enzimática , Células HCT116 , Humanos , Sulfóxidos
6.
Int J Mol Med ; 36(4): 1073-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26310574

RESUMO

Folic acid is a water-soluble vitamin in the B-complex group, and an exogenous intake is required for health, growth and development. As a precursor to co-factors, folic acid is required for one-carbon donors in the synthesis of DNA bases and other essential biomolecules. A lack of dietary folic acid can lead to folic acid deficiency and can therefore result in several health problems, including macrocytic anemia, elevated plasma homocysteine levels, cardiovascular disease, birth defects, carcinogenesis, muscle weakness and difficulty in walking. Previous studies have indicated that folic acid exerts a positive effect on skeletal muscle functions. However, the precise role of folic acid in skeletal muscle cell differentiation remains poorly understood. Thus, in the present study, we examined the effects of folic acid on neo-myotube maturation and differentiation using C2C12 murine myoblasts. We found that folic acid promoted the formation of multinucleated myotubes, and increased the fusion index and creatine kinase (CK) activity in a concentration-dependent manner. In addition, western blot analysis revealed that the expression levels of the muscle-specific marker, myosin heavy chain (MyHC), as well as those of the myogenic regulatory factors (MRFs), MyoD and myogenin, were increased in the folic acid-treated myotubes during myogenic differentiation. Folic acid also promoted the activation of the Akt pathway, and this effect was inhibited by treatment of the C2C12 cells with LY294002 (Akt inhibitor). Blocking of the Akt pathway with a specific inhibitor revealed that it was necessary for mediating the stimulatory effects of folic acid on muscle cell differentiation and fusion. Taken together, our data suggest that folic acid promotes the differentiation of C2C12 cells through the activation of the Akt pathway.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ácido Fólico/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos , Mioblastos/citologia
7.
Exp Ther Med ; 9(4): 1421-1428, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25780445

RESUMO

Herbal extracts and dietary supplements may be extracted from the medicinal plants used in traditional Chinese medicine, and are used increasingly commonly worldwide for their benefits to health and quality of life. Thus, ensuring that they are safe for human consumption is a critical issue for the preparation of plant extracts as dietary supplements. The present study investigated extracts of Salvia miltiorrhiza Bunge (S. miltiorrhiza), traditionally used in Asian countries to treat a variety of conditions, as a dietary supplement or as an ingredient in functional foods. Dried S. miltiorrhiza root was extracted with various solvents and under varying extraction conditions, and the effects of the extracts on the viability of five human cancer cell lines were compared. Extracts obtained using 100% ethanol and 100% acetone as solvents exhibited more potent effects compared with extracts obtained using 70 and 30% aqueous ethanol. Furthermore, the active components of S. miltiorrhiza ethanol extracts, known as tanshinones, were investigated. Dihydrotanshinone I was observed to exhibit a higher cytotoxic potential compared with the other tanshinones in the majority of the examined cell lines. Conversely, cryptotanshinone exhibited weak anti-cancer activity. In summary, the results of the present study suggest that the active components obtained from an ethanol extract of S. miltiorrhiza possess the potential to be used as ingredients in functional and health care foods that may be used to improve the effectiveness of chemotherapeutics in the prevention and/or treatment of cancer.

8.
Int J Oncol ; 45(3): 1250-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969167

RESUMO

Betaine is an important human nutrient obtained from various foods and studies in animals and humans have provided results suggesting their pathogenesis of various chronic diseases and points to a role in risk assessment and disease prevention. However, the molecular mechanisms of its activity remain poorly understood and warrant further investigation. This study was performed to investigate the anti-inflammation and tumor preventing capacity of betaine on colitis-associated cancer in mice. In in vivo experiments, we induced colon tumors in mice by azoxymethane (AOM) and dextran sulfate sodium (DSS) and evaluated the effects of betaine on tumor growth. Administration with betaine significantly decreased the incidence of tumor formation with downregulation of inflammation. Treatment with betaine inhibited ROS generation and GSSG concentration in colonic mucosa. Based on the qPCR data, administration of betaine inhibited inflammatory cytokines such TNF-α, IL-6, iNOS and COX-2. In in vitro experiments, LPS-induced NF-κB and inflammatory-related cytokines were inhibited by betaine treatment in RAW 264.7 murine macrophage cells. Our findings suggest that betaine is one of the candidates for the prevention of inflammation-associated colon carcinogenesis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Betaína/administração & dosagem , Colite/induzido quimicamente , Colite/tratamento farmacológico , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Animais , Azoximetano , Linhagem Celular , Sulfato de Dextrana , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Espécies Reativas de Oxigênio/metabolismo
9.
Int J Oncol ; 44(5): 1599-606, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24626522

RESUMO

Apigenin (4',5,7-trihydroxyflavone) is a natural flavonoid, shown to have chemopreventive and/or anticancer properties in a variety of human cancer cells. The involvement of autophagy in apigenin-induced apoptotic cell death of HCT116 human colon cancer cells was investigated. Apigenin induced suppression of cell growth in a concentration-dependent manner in HCT116 cells. Flow cytometric analyses indicated that apigenin resulted in G2/M phase arrest. This flavone also suppressed the expression of both cyclin B1 and its activating partners, Cdc2 and Cdc25c, whereas the expression of cell cycle inhibitors, such as p53 and p53-dependent p21(CIP1/WAF1), was increased after apigenin treatment. Apigenin induced poly (ADP-ribose) polymerase (PARP) cleavage and decreased the levels of procaspase-8, -9 and -3. In addition, the apigenin-treated cells exhibited autophagy, as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles by flow cytometry. Furthermore, the results of the western blot analysis revealed that the levels of LC3-II, the processed form of LC3-I, was increased by apigenin. Treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly enhanced the apoptosis induced by apigenin, which was accompanied by an increase in the levels of PARP cleavage. These results indicate that apigenin has apoptosis- and autophagy-inducing effects in HCT116 colon cancer cells. Autophagy plays a cytoprotective role in apigenin-induced apoptosis, and the combination of apigenin and an autophagy inhibitor may be a promising strategy for colon cancer control.


Assuntos
Antineoplásicos/farmacologia , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Colorretais/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina B1/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Med ; 33(4): 943-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481288

RESUMO

Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VAD­FMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin. Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Células HCT116 , Humanos , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA