Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396988

RESUMO

Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aß), and Aß-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aß, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.


Assuntos
Doença de Alzheimer , Antioxidantes , Extratos Vegetais , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Antioxidants (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36829894

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease caused by various factors, including intestinal inflammation and barrier dysfunction. Herein, we determined the effects of fermented glutinous rice (FGR) on the expression of tight junction proteins and levels of inflammation and apoptosis in the dextran sodium sulfate (DSS)-induced acute colitis model. FGR was orally administered once per day to C57BL/6J mice with colitis induced by 5% DSS in drinking water. FGR administration recovered DSS-induced body weight loss and irregularly short colon lengths. FGR inhibited the DSS-induced decrease in FITC-dextran (FD)-4 permeability and myeloperoxidase activity. Moreover, FGR treatment repaired the reduction of zonula occluden-1 (ZO-1) and occludin expression and the increase in claudin-2 expression in colonic tissue relative to that following DSS administration. FGR treatment significantly recovered expression of cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß, in serum or respective mRNA expression in colonic tissue relative to that following DSS administration. FGR regulated levels of oxidative stress-related factors, such as malondialdehyde and glutathione, and the activity of catalase and superoxide dismutase in the colon tissue of the DSS-induced acute colitis mice model. Furthermore, FGR treatment inhibited apoptosis by reducing the activity of caspase-3 and the ratio of Bcl-2 associated X (Bax)/B-cell lymphoma 2 (Bcl-2). Collectively, FGR treatment protected the intestinal barrier from dysfunction and inhibited inflammation and apoptosis in DSS-induced colitis. Therefore, FGR may decrease the inflammatory response and be a candidate for treating and prevention inflammatory bowel disease by protecting the intestinal integrity.

3.
Front Immunol ; 13: 878365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464460

RESUMO

Interleukin-13 receptor subunit alpha-2 (IL-13Rα2, CD213A), a high-affinity membrane receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer, adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence demonstrates IL-13 can signal through IL-13Rα2 in human cells. In addition, expression of IL-13Rα2 and IL-13Rα2-mediated signaling has been shown to promote tumor proliferation, cell survival, tumor progression, invasion, and metastasis. Given its differential expression in tumor versus normal tissue, IL-13Rα2 is an attractive immunotherapy target, as both a targetable receptor and an immunogenic antigen. Multiple promising strategies, including immunotoxins, cancer vaccines, and chimeric antigen receptor (CAR) T cells, have been developed to target IL-13Rα2. In this mini-review, we discuss recent developments surrounding IL-13Rα2-targeted therapies in pre-clinical and clinical study, including potential strategies to improve IL-13Rα2-directed cancer treatment efficacy.


Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Neoplasias Pancreáticas , Glioblastoma/patologia , Humanos , Imunoterapia , Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Neoplasias Pancreáticas/patologia
4.
J Allergy Clin Immunol ; 149(1): 302-314, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089750

RESUMO

BACKGROUND: Pediatric endogenous Cushing syndrome (eCs) is mainly caused by pituitary corticotropin-producing adenomas, and most glucocorticoid-dependent effects progressively regress upon tumor removal. eCs reproduces long-term, high-dose glucocorticoid therapy, representing a clean, natural, and unbiased model in which to study glucocorticoid bona fide effects on immunity. OBJECTIVE: We performed extensive immunologic studies in otherwise healthy pediatric patients with eCs before and 6 to 13 months after tumor resection, as well as in in vitro glucocorticoid-treated control cells. METHODS: Flow cytometry, immunoblotting, enzyme-linked immunosorbent assay, real-time quantitative PCR, and RNA-Seq techniques were used to characterize patients' and in vitro glucocorticoid treated cells. RESULTS: Reduced thymic output, decreased naive T cells, diminished proliferation, and increased T-cell apoptosis were detected before surgery; all these defects eventually normalized after tumor removal in patients. In vitro studies also showed increased T-cell apoptosis, with correspondingly diminished NF-κB signaling and IL-21 levels. In this setting, IL-21 addition upregulated antiapoptotic BCL2 expression and rescued T-cell apoptosis in a PI3K pathway-dependent manner. Similar and reproducible findings were confirmed in eCs patient cells as well. CONCLUSIONS: We identified decreased thymic output and lymphocyte proliferation, together with increased apoptosis, as the underlying causes to T-cell lymphopenia in eCs patients. IL-21 was decreased in both natural and in vitro long-term, high-dose glucocorticoid environments, and in vitro addition of IL-21 counteracted the proapoptotic effects of glucocorticoid therapy. Thus, our results suggest that administration of IL-21 in patients receiving long-term, high-dose glucocorticoid therapy may contribute to ameliorate lymphopenia and the complications associated to it.


Assuntos
Síndrome de Cushing/imunologia , Citocinas/imunologia , Glucocorticoides/farmacologia , Linfopenia/imunologia , Linfócitos T/efeitos dos fármacos , Adolescente , Apoptose/efeitos dos fármacos , Criança , Síndrome de Cushing/sangue , Síndrome de Cushing/genética , Citocinas/sangue , Citocinas/genética , Feminino , Humanos , Contagem de Leucócitos , Linfopenia/sangue , Linfopenia/genética , Masculino , Linfócitos T/imunologia
5.
Cell Mol Life Sci ; 78(15): 5789-5805, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129058

RESUMO

Integrin CD103 mediates the adhesion and tissue retention of T cells by binding to E-cadherin which is abundant on epithelial cells. Notably, CD103 is highly expressed on CD8 T cells but conspicuously absent on most CD4 T cells. The mechanism controlling such lineage-specific expression of CD103 remains unclear. Using a series of genetically engineered mouse models, here, we demonstrate that the regulatory mechanism of CD103 expression is distinct between CD4 and CD8 T cells, and that the transcription factor Runx3 plays an important but not an essential role in this process. We further found that the availability of integrin ß7 which heterodimerizes with CD103 was necessary but also constrained the surface expression of CD103. Notably, the forced surface expression of CD103 did not significantly alter the thymic development of conventional T cells but severely impaired the generation of MHC-II-restricted TCR transgenic T cells, revealing previously unappreciated aspects of CD103 in the selection and maturation of CD4 T cells. Unlike its effect on CD4 T cell development, however, CD103 overexpression did not significantly affect CD4 T cells in peripheral tissues. Moreover, the frequency and number of CD4 T cells in the small intestine epithelium did not increase even though E-cadherin is highly expressed in this tissue. Collectively, these results suggest that most mature CD4 T cells are refractory to the effects of CD103 expression, and that they presumably utilize CD103-independent pathways to control their tissue retention and residency.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Cadeias alfa de Integrinas/metabolismo , Animais , Caderinas/metabolismo , Feminino , Cadeias beta de Integrinas/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
6.
J Immunol ; 203(5): 1242-1251, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31341076

RESUMO

Unlike IL-7, which is known to be critical for T cell thymic development, the role of IL-21 in this process is still controversial. IL-21 has been shown to accelerate thymic recovery in mice treated with glucocorticoids and revives the peripheral T cell pool in aged animals. However, mice with a defect in IL-21 signaling exhibit normal thymic cellularity, challenging the importance of this cytokine in the thymic developmental process. Using mixed bone marrow chimeric mice, our studies describe a multilayered role for IL-21 in thymopoiesis. In this system, IL-21R-deficient cells are unable to compete with wild-type populations at different stages of the thymic development. Using a mixed bone marrow chimeric animal model, IL-21 seems to be involved as early as the double-negative 1 stage, and the cells from the knockout compartment have problems transitioning to subsequent double-negative stages. Also, similar to IL-7, IL-21 seems to be involved in the positive selection of double-positive lymphocytes and appears to play a role in the migration of single-positive T cells to the periphery. Although not as critical as IL-7, based on our studies, IL-21 plays an important complementary role in thymic T cell development, which, to date, has been underrecognized.


Assuntos
Interleucinas/imunologia , Transdução de Sinais/imunologia , Timo/imunologia , Animais , Medula Óssea/imunologia , Diferenciação Celular/imunologia , Interleucina-7/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
7.
Front Immunol ; 8: 1436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163509

RESUMO

CD8 T cells are important for maintaining the chronicity of Toxoplasma gondii infection. In a T. gondii encephalitis susceptible model, we recently demonstrated that CD4 T cells play an essential helper role in the maintenance of the effector response and CD8 T cell dysfunctionality was linked to CD4 T cell exhaustion. However, CD4 T cells are constituted of different subsets with various functions and the population(s) providing help to the CD8 T cells has not yet been determined. In the present study, T follicular helper cells (Tfh), which are known to be essential for B cell maturation and are one of the main sources of IL-21, were significantly increased during chronic toxoplasmosis. However, at week 7 p.i., when CD8 T cells are exhausted, the Tfh population exhibited increased expression of several inhibitory receptors and levels of IL-21 in the serum were decreased. The importance of IL-21 in the maintenance of CD8 T cells function after T. gondii infection was further demonstrated in IL-21R KO mouse model. Interestingly, while CD8 T cells from both knockout (KO) and wild-type mice expressed similar levels of PD-1, animals with defective IL-21 signaling exhibited lower polyfunctionality than wild-type controls. This reduced polyfunctional ability observed in CD8 T cells from KO mice was associated with a significant increase in other inhibitory receptors like Tim-3, LAG-3, and 2B4. Furthermore, the animals exhibited greater signs of Toxoplasma reactivation manifested by the reduced number of cysts and increased expression of tachyzoite (replicative form of the parasite) specific genes (SAG1 and ENO2) in the brain. Also, IL-21R KO mice displayed a higher frequency of tachyzoite-infected monocytes in the blood and spleen. Our findings suggest the importance of Tfh and IL-21 during chronic toxoplasmosis and establish a critical role for this cytokine in regulating CD8 T cell dysfunction by preventing the co-expression of multiple inhibitory receptors during chronic parasitic infection.

9.
Nat Commun ; 8: 15921, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665395

RESUMO

Clinical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa.


Assuntos
Processamento Alternativo , Negro ou Afro-Americano/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Idoso , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
10.
Nanoscale ; 6(14): 8292-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24933405

RESUMO

Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H2S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH3, CO and H2). The maximum response was 108.92 for 5 ppm of H2S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H2S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H2S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response.

11.
J Exp Med ; 209(10): 1781-95, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22945921

RESUMO

Negative selection and regulatory T (T reg) cell development are two thymus-dependent processes necessary for the enforcement of self-tolerance, and both require high-affinity interactions between the T cell receptor (TCR) and self-ligands. However, it remains unclear if they are similarly impacted by alterations in TCR signaling potential. We generated a knock-in allele (6F) of the TCR ζ chain gene encoding a mutant protein lacking signaling capability whose expression is controlled by endogenous ζ regulatory sequences. Although negative selection was defective in 6F/6F mice, leading to the survival of autoreactive T cells, 6F/6F mice did not develop autoimmune disease. We found that 6F/6F mice generated increased numbers of thymus-derived T reg cells. We show that attenuation of TCR signaling potential selectively impacts downstream signaling responses and that this differential effect favors Foxp3 expression and T reg cell lineage commitment. These results identify a potential compensatory pathway for the enforcement of immune tolerance in response to defective negative selection caused by reduced TCR signaling capability.


Assuntos
Doenças Autoimunes/imunologia , Seleção Clonal Mediada por Antígeno/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Alelos , Animais , Doenças Autoimunes/genética , Transplante de Medula Óssea/imunologia , Seleção Clonal Mediada por Antígeno/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Ordem dos Genes , Proteínas de Homeodomínio/genética , Memória Imunológica , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Timócitos/imunologia , Timócitos/metabolismo
12.
Biochem Biophys Res Commun ; 330(4): 1262-7, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15823579

RESUMO

The human cytomegalovirus (HCMV) gene product US11 dislocates MHC I heavy chains from the endoplasmic reticulum (ER) and targets them for proteasomal degradation in the cytosol. To identify the structural and functional domains of US11 that mediate MHC class I molecule degradation, we constructed truncated mutants and chimeric proteins, and analyzed these to determine their intracellular localization and their ability to degrade MHC class I molecules. We found that only the luminal domain of US11 was essential to confer ER localization to the protein but that the ability to degrade MHC class I molecules required both the transmembrane domain and the luminal domain of US11. By analyzing a series of point mutants of the transmembrane domain, we were also able to identify Gln(192) and Gly(196) as being crucial for the functioning of US11, suggesting that these residues may play a critical role in interacting with the components of the protein degradation machinery.


Assuntos
Citomegalovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Virais/fisiologia , Aminoácidos/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA