Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cancers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894388

RESUMO

Skull-base chordoma and chondrosarcoma are rare radioresistant tumors treated with surgical resection and/or radiotherapy. Because of the established dosimetric and biological benefits of heavy particle therapy, we performed a systematic and evidence-based review of the clinical outcomes of patients with skull-base chordoma and chondrosarcoma treated with carbon ion radiotherapy (CIRT). A literature review was performed using a MEDLINE search of all articles to date. We identified 227 studies as appropriate for review, and 24 were ultimately included. The published data illustrate that CIRT provides benchmark disease control outcomes for skull-base chordoma and chondrosarcoma, respectively, with acceptable toxicity. CIRT is an advanced treatment technique that may provide not only dosimetric benefits over conventional photon therapy but also biologic intensification to overcome mechanisms of radioresistance. Ongoing research is needed to define the magnitude of benefit, patient selection, and cost-effectiveness of CIRT compared to other forms of radiotherapy.

2.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894434

RESUMO

BACKGROUND: Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS: To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS: The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS: After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.

3.
Surg Neurol Int ; 14: 293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680918

RESUMO

Background: Radiotherapy has increasingly assumed a central role in the multidisciplinary treatment of skull base lesions. Unfortunately, it is often burdened by relevant radio-induced damage to the pituitary function and the surrounding structures and systems. Patients who were treated with radiotherapy around the sellar region especially have a high risk of developing radio-induced hypopituitarism. Particle therapy has the potential advantage of delivering a higher radiation dose to the target while potentially sparing the sellar region and pituitary function. The aim of this study is to evaluate the pituitary function in adult patients who have undergone hadron therapy for anterior skull base lesions involving or surrounding the pituitary gland. Methods: This is a retrospective, observational, and noncontrolled study. We evaluated pituitary and peripheral hormone levels in all patients referring to National Center for Oncological Hadrontherapy, Pavia, Italy for anterior skull base tumors. Furthermore, we performed a magnetic resonance imaging for every follow-up to evaluate potential tumoral growth. Results: We evaluated 32 patients with different tumoral lesions with a mean follow-up of 27.9 months. The mean hadron therapy (HT) dose was 60 ± 14 Gray, with a mean dose per fraction of 2.3 ± 2.1 Gray. Six patients were treated with carbon ions and 26 with protons. Pituitary hormone alteration of some kind was reported for six patients. No patient experienced unexpected severe adverse events related to particle therapy. Conclusion: Particle radiotherapy performed on anterior skull base lesions has proved to cause limited damage to pituitary function in the adult population.

4.
Front Oncol ; 13: 1161752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350949

RESUMO

The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.

5.
J Appl Clin Med Phys ; 24(6): e13986, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031365

RESUMO

PURPOSE: To define an optimal set of b-values for accurate derivation of diffusion MRI parameters in the brain with segmented Intravoxel Incoherent Motion (IVIM) model. METHODS: Simulations of diffusion signals were performed to define an optimal set of b-values targeting different perfusion regimes, by relying on an optimization procedure which minimizes the total relative error on estimated IVIM parameters computed with a segmented fitting procedure. Then, the optimal b-values set was acquired in vivo on healthy subjects and skull base chordoma patients to compare the optimized protocol with a clinical one. RESULTS: The total relative error on simulations decreased of about 40% when adopting the optimal set of 13 b-values (0 10 20 40 50 60 200 300 400 1200 1300 1400 1500 s/mm2 ), showing significant differences and increased precision on D and f estimates with respect to simulations with a non-optimized b-values set. Similarly, in vivo acquisitions demonstrated a dependency of IVIM parameters on the b-values array, with differences between the optimal set of b-values and a clinical non-optimized acquisition. IVIM parameters were compatible to literature values, with D (0.679/0.701 [0.022/0.008] ·10-3 mm2 /s), f (5.49/5.80 [0.70/1.14] %), and D* (8.25/7.67 [0.92/0.83] ·10-3 mm2 /s) median [interquartile range] estimates for white matter/gray matter in volunteers and D (0.709/0.715/1.06 [0.035/0.023/0.271] ·10-3 mm2 /s), f (7.08/7.84/21.54 [1.20/1.06/6.05] %), and D* (10.85/11.84/2.32 [1.38/2.32/4.94] ·10-3 mm2 /s) for white matter/gray matter/Gross Tumor Volume in patients with skull-base chordoma tumor. CONCLUSIONS: The definition of an optimal b-values set can improve the estimation of quantitative IVIM parameters. This allows setting up an optimized approach that can be adopted for IVIM studies in the brain.


Assuntos
Cordoma , Humanos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Imagem de Difusão por Ressonância Magnética/métodos
6.
Med Phys ; 50(5): 2900-2913, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36602230

RESUMO

BACKGROUND: Quantitative imaging such as Diffusion-Weighted MRI (DW-MRI) can be exploited to non-invasively derive patient-specific tumor microstructure information for tumor characterization and local recurrence risk prediction in radiotherapy. PURPOSE: To characterize tumor microstructure according to proliferative capacity and predict local recurrence through microstructural markers derived from pre-treatment conventional DW-MRI, in skull-base chordoma (SBC) patients treated with proton (PT) and carbon ion (CIRT) radiotherapy. METHODS: Forty-eight patients affected by SBC, who underwent conventional DW-MRI before treatment and were enrolled for CIRT (n = 25) or PT (n = 23), were retrospectively selected. Clinically verified local recurrence information (LR) and histological information (Ki-67, proliferation index) were collected. Apparent diffusion coefficient (ADC) maps were calculated from pre-treatment DW-MRI and, from these, a set of microstructural parameters (cellular radius R, volume fraction vf, diffusion D) were derived by applying a fine-tuning procedure to a framework employing Monte Carlo simulations on synthetic cell substrates. In addition, apparent cellularity (ρapp ) was estimated from vf and R for an easier clinical interpretation. Histogram-based metrics (mean, median, variance, entropy) from estimated parameters were considered to investigate differences (Mann-Whitney U-test, α = 0.05) in estimated tumor microstructure in SBCs characterized by low or high cell proliferation (Ki-67). Recurrence-free survival analyses were also performed to assess the ability of the microstructural parameters to stratify patients according to the risk of local recurrence (Kaplan-Meier curves, log-rank test α = 0.05). RESULTS: Refined microstructural markers revealed optimal capabilities in discriminating patients according to cell proliferation, achieving best results with mean values (p-values were 0.0383, 0.0284, 0.0284, 0.0468, and 0.0088 for ADC, R, vf, D, and ρapp, respectively). Recurrence-free survival analyses showed significant differences between populations at high and low risk of local recurrence as stratified by entropy values of estimated microstructural parameters (p = 0.0110). CONCLUSION: Patient-specific microstructural information was non-invasively derived providing potentially useful tools for SBC treatment personalization and optimization in particle therapy.


Assuntos
Cordoma , Neoplasias de Cabeça e Pescoço , Neoplasias da Base do Crânio , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Cordoma/diagnóstico por imagem , Cordoma/radioterapia , Cordoma/patologia , Estudos Retrospectivos , Antígeno Ki-67 , Crânio
7.
Acta Oncol ; 61(8): 979-986, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35668710

RESUMO

INTRODUCTION: Hodgkin lymphoma (HL) is a highly curable hematological malignancy. Consolidation radiation therapy techniques have made significant progresses to improve organ-at-risk sparing in order to reduce late radiation-induced toxicity. Recent technical breakthroughs notably include intensity modulated proton therapy (IMPT), which has demonstrated a major dosimetric benefit at the cardiac level for mediastinal HL patients. However, its implementation in clinical practice is still challenging, notably due to the limited access to proton therapy facilities. In this context, the purpose of this study was to estimate the benefit of IMPT for HL proton therapy for diverse cardiac adverse events and to propose a general frame for mediastinal HL patient selection strategy for IMPT based on cardiotoxicity reduction, patient clinical factors, and IMPT treatment availability. MATERIAL AND METHODS: This retrospective dosimetric study included 30 mediastinal HL patients treated with VMAT. IMPT plans were generated on the initial simulation scans. Dose to the heart, to the left ventricle and to the valves were retrieved to calculate the relative risk (RR) of ischemic heart disease (IHD), congestive heart failure (CHF) and valvular disease (VD). Composite relative risk reduction (cRRR) of late cardiotoxicity, between VMAT and IMPT, were calculated as the weighted mean of relative risk reduction for IHD, CHF and VD, calculated across a wide range of cardiovascular risk factor combinations. The proportion of mediastinal HL patients who could benefit from IMPT was estimated in European countries, based on the country population and on the number of active gantries, to propose country-specific cRRR thresholds for patient selection. RESULTS: Compared with VMAT, IMPT significantly reduced average mean doses to the heart (2.36 Gy vs 0.99 Gy, p < 0.01), to the left ventricle (0.67 Gy vs 0.03, p < 0.01) and to the valves (1.29 Gy vs. 0.06, p < 0.01). For a HL patient without cardiovascular risk factor other than anthracycline-based chemotherapy, the relative risks of late cardiovascular complications were significantly lower after IMPT compared with VMAT for ischemic heart disease (1.07 vs 1.17, p < 0.01), for congestive heart failure (2.84 vs. 3.00, p < 0.01), and for valvular disease (1.01 vs. 1.06, p < 0.01). The median cRRR of cardiovascular adverse events with IMPT was 4.8%, ranging between 0.1% and 30.5%, depending on the extent of radiation fields and on the considered cardiovascular risk factors. The estimated proportion of HL patients currently treatable with IMPT in European countries with proton therapy facilities ranged between 8.0% and 100% depending on the country, corresponding to cRRR thresholds ranging from 24.0% to 0.0%. CONCLUSION: While a statistically significant clinical benefit is theoretically expected for ischemic heart disease, cardiac heart failure and valvular disease for mediastinal HL patients with IMPT, the overall cardiotoxicity risk reduction is notable only for a minority of patients. In the context of limited IMPT availability, this study proposed a general model-based selection approach for mediastinal HL patient based on calculated cardiotoxicity reduction, taking into consideration patient clinical characteristics and IMPT facility availability.


Assuntos
Insuficiência Cardíaca , Doenças das Valvas Cardíacas , Doença de Hodgkin , Neoplasias do Mediastino , Isquemia Miocárdica , Terapia com Prótons , Lesões por Radiação , Radioterapia de Intensidade Modulada , Cardiotoxicidade/etiologia , Insuficiência Cardíaca/etiologia , Doenças das Valvas Cardíacas/etiologia , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/radioterapia , Humanos , Neoplasias do Mediastino/radioterapia , Isquemia Miocárdica/etiologia , Órgãos em Risco , Seleção de Pacientes , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
8.
Radiother Oncol ; 168: 241-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093408

RESUMO

PURPOSE: Treatment-related toxicity after irradiation of brain tumours has been underreported in the literature. Furthermore, there is considerable heterogeneity on how and when toxicity is evaluated. The aim of this European Particle Network (EPTN) collaborative project is to develop recommendations for uniform follow-up and toxicity scoring of adult brain tumour patients treated with radiotherapy. METHODS: A Delphi method-based consensus was reached among 24 international radiation-oncology experts in the field of neuro-oncology concerning the toxicity endpoints, evaluation methods and time points. RESULTS: In this paper, we present a basic framework for consistent toxicity scoring and follow-up, using multiple levels of recommendation. Level I includes all recommendations that are considered minimum of care, whereas level II and III are optional evaluations in the advanced clinical or research setting, respectively. Per outcome domain, the clinical endpoints and evaluation methods per level are listed. Where relevant, the organ at risk threshold doses for recommended referral to specific organ specialists are defined. CONCLUSION: These consensus-based recommendations for follow-up will enable the collection of uniform toxicity data of brain tumour patients treated with radiotherapy. With adoptation of this standard, collaboration will be facilitated and we can further propel the research field of radiation-induced toxicities relevant for these patients. An online tool to implement this guideline in clinical practice is provided at www.cancerdata.org.


Assuntos
Terapia com Prótons , Neoplasias da Base do Crânio , Adulto , Encéfalo , Consenso , Seguimentos , Humanos , Terapia com Prótons/efeitos adversos , Prótons , Neoplasias da Base do Crânio/radioterapia
11.
Cancers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34680331

RESUMO

It is unclear whether autoimmune diseases (ADs) may predispose patients to higher radiation-induced toxicity, and no data are available regarding particle therapy. Our objective was to determine if cancer patients with ADs have a higher incidence of complications after protons (PT) or carbon ion (CIRT) therapy. METHODS: In our retrospective monocentric study, 38 patients with ADs over 1829 patients were treated with particle therapy between 2011 and 2020. Thirteen patients had collagen vascular disease (CVD), five an inflammatory bowel disease (IBD) and twenty patients an organ-specific AD. Each patient was matched with two control patients without ADs on the basis of type/site of cancer, type of particle treatment, age, sex, hypertension and/or diabetes and previous surgery. RESULTS: No G4-5 complications were reported. In the AD group, the frequency of acute grade 3 (G3) toxicity was higher than in the control group (15.8% vs. 2.6%, p = 0.016). Compared to their matched controls, CVD-IBD patients had a higher frequency of G3 acute complications (27.7 vs. 2.6%, p = 0.002). There was no difference between AD patients (7.9%) and controls (2.6%) experiencing late G3 toxicity (p = 0.33). The 2 years disease-free survival was lower in AD patients than in controls (74% vs. 91%, p = 0.01), although the differences in terms of survival were not significant. CONCLUSIONS: G3 acute toxicity was more frequently reported in AD patients after PT or CIRT. Since no severe G4-G5 events were reported and in consideration of the benefit of particle therapy for selected cancers, we conclude that particle therapy should be not discouraged for patients with ADs. Further prospective studies are warranted to gain insight into toxicity in cancer patients with ADs enrolled for particle therapy.

12.
Br J Radiol ; 94(1128): 20210524, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34520670

RESUMO

OBJECTIVE: Carbon ion radiation therapy (CIRT) is an emerging radiation technique with advantageous physical and radiobiologic properties compared to conventional radiotherapy (RT) providing better response in case of radioresistant and hypoxic tumors. Our aim is to critically review if functional imaging techniques could play a role in predicting outcome of CIRT-treated tumors, as already proven for conventional RT. METHODS: 14 studies, concerning Magnetic resonance imaging (MRI) and Positron Emission Tomography (PET), were selected after a comprehensive search on multiple electronic databases from January 2000 to March 2020. RESULTS: MRI studies (n = 5) focused on diffusion-weighted MRI and, even though quantitative parameters were the same in all studies (apparent diffusion coefficient, ADC), results were not univocal, probably due to different imaging acquisition protocols and tumoral histology. For PET studies (n = 9), different tracers were used such as [18F]FDG and other uncommon tracers ([11C]MET, [18F]FLT), with a relevant heterogeneity regarding parameters used for outcome assessment. CONCLUSION: No conclusion can be drawn on the predictive value of functional imaging in CIRT-treated tumors. A standardization of image acquisition, multi-institutional large trials and external validations are needed in order to establish the prognostic value of functional imaging in CIRT and to guide clinical practice. ADVANCES IN KNOWLEDGE: Emerging studies focused on functional imaging's role in predicting CIRT outcome. Due to the heterogeneity of images acquisition and studies, results are conflicting and prospective large studies with imaging standardized protocol are needed.


Assuntos
Radioterapia com Íons Pesados/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Humanos , Resultado do Tratamento
13.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34503233

RESUMO

BACKGROUND: The standard treatment for skull base chondrosarcoma (SB-CHS) consists of surgery and high-dose radiation therapy. Our aim was to evaluate outcome in terms of local control (LC) and toxicity of proton therapy (PT) and carbon ion (CIRT) after surgery. MATERIALS AND METHODS: From September 2011 to July 2020, 48 patients underwent particle therapy (67% PT, 33% CIRT) for SB-CHS. PT and CIRT total dose was 70 GyRBE (relative biological effectiveness) in 35 fractions and 70.4 GyRBE in 16 fractions, respectively. Toxicity was assessed using the Common Terminology Criteria for Adverse Events (CTCAE v5). RESULTS: After a median follow-up time of 38 months, one local failure (2%) was documented and the patient died for progressive disease. Overall, 3-year LC was 98%. One (2%) and 4 (8%) patients experienced G3 acute and late toxicity, respectively. White-matter brain changes were documented in 22 (46%) patients, but only 7 needed steroids (G2). No patients had G3 brain toxicity. No G4-5 complications were reported. We did not find any correlation between high-grade toxicity or white-matter changes and characteristics of patients, disease and surgery. CONCLUSIONS: PT and CIRT appeared to be effective and safe treatments for patients with SB-CHS, resulting in high LC rates and an acceptable toxicity profile.

14.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359644

RESUMO

Consolidative radiation therapy for early-stage Hodgkin lymphoma (HL) improves progression-free survival. Unfortunately, first-generation techniques, relying on large irradiation fields, were associated with an increased risk of secondary cancers, and of cardiac and lung toxicity. Fortunately, the use of smaller target volumes combined with technological advances in treatment techniques currently allows efficient organs-at-risk sparing without altering tumoral control. Recently, proton therapy has been evaluated for mediastinal HL treatment due to its potential to significantly reduce the dose to organs-at-risk, such as cardiac substructures. This is expected to limit late radiation-induced toxicity and possibly, second-neoplasm risk, compared with last-generation intensity-modulated radiation therapy. However, the democratization of this new technique faces multiple issues. Determination of which patient may benefit the most from proton therapy is subject to intense debate. The development of new effective systemic chemotherapy and organizational, societal, and political considerations might represent impediments to the larger-scale implementation of HL proton therapy. Based on the current literature, this critical review aims to discuss current challenges and controversies that may impede the larger-scale implementation of mediastinal HL proton therapy.

15.
Cancers (Basel) ; 13(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34359647

RESUMO

Consolidative radiation therapy (RT) is of prime importance for early-stage Hodgkin lymphoma (HL) management since it significantly increases progression-free survival (PFS). Nevertheless, first-generation techniques, relying on large irradiation fields, delivered significant radiation doses to critical organs-at-risk (OARs, such as the heart, to the lung or the breasts) when treating mediastinal HL; consequently, secondary cancers, and cardiac and lung toxicity were substantially increased. Fortunately, HL RT has drastically evolved and, nowadays, state-of-the-art RT techniques efficiently spare critical organs-at-risks without altering local control or overall survival. Recently, proton therapy has been evaluated for mediastinal HL treatment, due to its possibility to significantly reduce integral dose to OARs, which is expected to limit second neoplasm risk and reduce late toxicity. Nevertheless, clinical experience for this recent technique is still limited worldwide. Based on current literature, this critical review aims to examine the current practice of proton therapy for mediastinal HL irradiation.

16.
Radiother Oncol ; 160: 259-265, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015385

RESUMO

BACKGROUND AND PURPOSE: To update the digital online atlas for organs at risk (OARs) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging with new OARs. MATERIALS AND METHODS: In this planned update of the neurological contouring atlas published in 2018, ten new clinically relevant OARs were included, after thorough discussion between experienced neuro-radiation oncologists (RTOs) representing 30 European radiotherapy-oncology institutes. Inclusion was based on daily practice and research requirements. Consensus was reached for the delineation after critical review. Contouring was performed on registered CT with intravenous (IV) contrast (soft tissue & bone window setting) and 3 Tesla (T) MRI (T1 with gadolinium & T2 FLAIR) images of one patient (1 mm slices). For illustration purposes, delineation on a 7 T MRI without IV contrast from a healthy volunteer was added. OARs were delineated by three experienced RTOs and a neuroradiologist based on the relevant literature. RESULTS: The presented update of the neurological contouring atlas was reviewed and approved by 28 experts in the field. The atlas is available online and includes in total 25 OARs relevant to neuro-oncology, contoured on CT and MRI T1 and FLAIR (3 T & 7 T). Three-dimensional (3D) rendered films are also available online. CONCLUSION: In order to further decrease inter- and intra-observer OAR delineation variability in the field of neuro-oncology, we propose the use of this contouring atlas in photon and particle therapy, in clinical practice and in the research setting. The updated atlas is freely available on www.cancerdata.org.


Assuntos
Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Órgãos em Risco , Tomografia Computadorizada por Raios X
17.
Phys Med ; 84: 72-79, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33872972

RESUMO

PURPOSE: To evaluate changes in diffusion and perfusion-related properties of white matter (WM) induced by proton therapy, which is capable of a greater dose sparing to organs at risk with respect to conventional X-ray radiotherapy, and to eventually expose early manifestations of delayed neuro-toxicities. METHODS: Apparent diffusion coefficient (ADC) and IVIM parameters (D, D* and f) were estimated from diffusion-weighted MRI (DWI) in 46 patients affected by meningioma and treated with proton therapy. The impact on changes in diffusion and perfusion-related WM properties of dose and time, as well as the influence of demographic and pre-treatment clinical information, were investigated through linear mixed-effects models. RESULTS: Decreasing trends in ADC and D were found for WM regions hit by medium-high (30-40 Gy(RBE)) and high (>40 Gy(RBE)) doses, which are compatible with diffusion restriction due to radiation-induced cellular injury. Significant influence of dose and time on median ADC changes were observed. Also, D* showed a significant dependency on dose, whereas f consistently showed no dependency on dose and time. Age, gender and surgery extent were also found to affect changes in ADC. CONCLUSIONS: These results overall agree with those from studies conducted on cohorts of mixed proton and X-ray radiotherapy patients. Future work should focus on relating our findings with clinical information of co-morbidities and thus exploiting such or more advanced imaging data to build normal tissue complication probability models to better integrate clinical and dose information.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Substância Branca , Imagem de Difusão por Ressonância Magnética , Humanos , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Terapia com Prótons/efeitos adversos , Substância Branca/diagnóstico por imagem
18.
Neuroradiology ; 63(7): 1053-1060, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33392736

RESUMO

PURPOSE: To assess early microstructural changes of meningiomas treated with proton therapy through quantitative analysis of intravoxel incoherent motion (IVIM) and diffusion-weighted imaging (DWI) parameters. METHODS: Seventeen subjects with meningiomas that were eligible for proton therapy treatment were retrospectively enrolled. Each subject underwent a magnetic resonance imaging (MRI) including DWI sequences and IVIM assessments at baseline, immediately before the 1st (t0), 10th (t10), 20th (t20), and 30th (t30) treatment fraction and at follow-up. Manual tumor contours were drawn on T2-weighted images by two expert neuroradiologists and then rigidly registered to DWI images. Median values of the apparent diffusion coefficient (ADC), true diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) were extracted at all timepoints. Statistical analysis was performed using the pairwise Wilcoxon test. RESULTS: Statistically significant differences from baseline to follow-up were found for ADC, D, and D* values, with a progressive increase in ADC and D in conjunction with a progressive decrease in D*. MRI during treatment showed statistically significant differences in D values between t0 and t20 (p = 0.03) and t0 and t30 (p = 0.02), and for ADC values between t0 and t20 (p = 0.04), t10 and t20 (p = 0.02), and t10 and t30 (p = 0.035). Subjects that showed a volume reduction greater than 15% of the baseline tumor size at follow-up showed early D changes, whereas ADC changes were not statistically significant. CONCLUSION: IVIM appears to be a useful tool for detecting early microstructural changes within meningiomas treated with proton therapy and may potentially be able to predict tumor response.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Imagem de Difusão por Ressonância Magnética , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Movimento (Física) , Estudos Retrospectivos
19.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477723

RESUMO

Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.

20.
Crit Rev Oncol Hematol ; 159: 103229, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33482343

RESUMO

AIMS: The limbic circuit (LC) is devoted to linking emotion to behavior and cognition. The injury this system results in post-RT cognitive dysfunction. The aim of this study is to create the first radiation oncologist's practical MR-based contouring guide for the delineation of the LC for the everyday clinical practice and education. METHODS: An anonymized diagnostic 3.0 T T1-weighted BRAVO MRI sequence from a healthy patient with typical brain anatomy was used to delineate LC. For each structure key anatomical contours were completed by radiation oncologists, along with a neuro-radiologist to generate the final version of the LC atlas. RESULTS: a step-by-step MR-based atlas of LC was created. Key structures of the LC, such as, cingulate gyrus, fornix, septal region, mammillary bodies, thalamus and the hippocampal-amygdala formation were contoured. CONCLUSIONS: This article provides the recommendations for the first contouring atlas of LC in the setting of patients receiving RT and education.


Assuntos
Órgãos em Risco , Radiação , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA