Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 926634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313013

RESUMO

N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson's disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1ß induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.

2.
Biomolecules ; 13(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671418

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious inflammatory lung disorder and a complication of SARS-CoV-2 infection. In patients with severe SARS-CoV-2 infection, the transition to ARDS is principally due to the occurrence of a cytokine storm and an exacerbated inflammatory response. The effectiveness of ultra-micronized palmitoylethanolamide (PEA-um) during the earliest stage of COVID-19 has already been suggested. In this study, we evaluated its protective effects as well as the effectiveness of its congener, 2-pentadecyl-2-oxazoline (PEA-OXA), using in vitro models of acute lung injury. In detail, human lung epithelial cells (A549) activated by polyinosinic-polycytidylic acid (poly-(I:C)) or Transforming Growth Factor-beta (TGF-ß) were treated with PEA-OXA or PEA. The release of IL-6 and the appearance of Epithelial-Mesenchymal Transition (EMT) were measured by ELISA and immunofluorescence assays, respectively. A possible mechanism of action for PEA-OXA and PEA was also investigated. Our results showed that both PEA-OXA and PEA were able to counteract poly-(I:C)-induced IL-6 release, as well as to revert TGF-ß-induced EMT. In addition, PEA was able to produce an "entourage" effect on the levels of the two endocannabinoids AEA and 2-AG, while PEA-OXA only increased PEA endogenous levels, in poly-(I:C)-stimulated A549 cells. These results evidence for the first time the superiority of PEA-OXA over PEA in exerting protective effects and point to PEA-OXA as a new promising candidate in the management of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Humanos , Interleucina-6 , SARS-CoV-2 , Fator de Crescimento Transformador beta , Lesão Pulmonar Aguda/tratamento farmacológico
3.
Psychopharmacology (Berl) ; 237(9): 2753-2765, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556401

RESUMO

RATIONALE: Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES: The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS: Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS: Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.


Assuntos
Alanina/uso terapêutico , Analgésicos Opioides/efeitos adversos , Glicina/análogos & derivados , Morfina/efeitos adversos , Naloxona/efeitos adversos , Ácidos Oleicos/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alanina/análogos & derivados , Animais , Glicina/química , Glicina/uso terapêutico , Masculino , Dependência de Morfina/tratamento farmacológico , Dependência de Morfina/psicologia , Antagonistas de Entorpecentes/efeitos adversos , Ácidos Oleicos/química , Ratos , Ratos Sprague-Dawley , Recompensa , Síndrome de Abstinência a Substâncias/psicologia
4.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138197

RESUMO

Phytocannabinoids (pCBs) are a large family of meroterpenoids isolated from the plant Cannabis sativa. Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are the best investigated phytocannabinoids due to their relative abundance and interesting bioactivity profiles. In addition to various targets, THC and CBD are also well-known agonists of peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor involved in energy homeostasis and lipid metabolism. In the search of new pCBs potentially acting as PPARγ agonists, we identified cannabimovone (CBM), a structurally unique abeo-menthane pCB, as a novel PPARγ modulator via a combined computational and experimental approach. The ability of CBM to act as dual PPARγ/α agonist was also evaluated. Computational studies suggested a different binding mode toward the two isoforms, with the compound able to recapitulate the pattern of H-bonds of a canonical agonist only in the case of PPARγ. Luciferase assays confirmed the computational results, showing a selective activation of PPARγ by CBM in the low micromolar range. CBM promoted the expression of PPARγ target genes regulating the adipocyte differentiation and prevented palmitate-induced insulin signaling impairment. Altogether, these results candidate CBM as a novel bioactive compound potentially useful for the treatment of insulin resistance-related disorders.


Assuntos
Canabinoides/química , Canabinoides/farmacologia , Cannabis/química , PPAR gama/agonistas , PPAR gama/metabolismo , Células 3T3-L1 , Animais , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Resistência à Insulina/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
ACS Chem Neurosci ; 11(8): 1117-1128, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32017529

RESUMO

Traumatic brain injury (TBI) is one of the main causes of death in young people for which currently no efficacious treatment exists. Recently, we have reported that mice with mild-TBI with a specific injury in the insula showed elevated levels of a little investigated N-acyl amino acid, N-oleoylglycine (OlGly). N-acyl amino acids have recently experienced an increased interest because of their important biological activities. They belong to the endocannabinoidome family of lipids with structural similarities with the endocannabinoids (eCBs). The aim of this study was to test the neuroprotective and antihyperalgesic actions of OlGly in a model of mouse mild-TBI (mTBI) and its effect on levels of eCBs and N-acylethanolamines at the end of treatment. Following mTBI, mice were administered a daily injection of OlGly (10-50-100 mg/kg i.p.) for 14 days. Treatment with OlGly normalized motor impairment and behavior in the light/dark box test, ameliorated TBI-induced thermal hyperalgesia and mechanical allodynia, and normalized aggressiveness and depression. Moreover, levels of eCBs and some N-acylethanolamines underwent significant changes 60 days after TBI, especially in the prefrontal cortex and hypothalamus, and OlGly reversed some of these changes. In conclusion, our findings reveal that OlGly ameliorates the behavioral alterations associated with mTBI in mice, while concomitantly modulating eCB and eCB-like mediator tone.


Assuntos
Concussão Encefálica/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Córtex Cerebral/efeitos dos fármacos , Glicina/análogos & derivados , Ácidos Oleicos/farmacologia , Aminoácidos/metabolismo , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Endocanabinoides/farmacologia , Glicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Biochem Pharmacol ; 175: 113859, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061773

RESUMO

The cellular microenvironment plays a critical role in the maintenance of bone marrow-derived mesenchymal stem cells (BM-MSCs) and their subsequent cell lineage differentiation. Recent studies suggested that individuals with adipocyte-related metabolic disorders have altered function and adipogenic potential of adipose stem cell subpopulations, primarily BM-MSCs, increasing the risk of heart attack, stroke or diabetes. In this study, we explored the potential therapeutic effect of some of the most abundant non-euphoric compounds derived from the Cannabis sativa plant (or phytocannabinoids) including tetrahydrocannabivarin (THCV), cannabidiol (CBD), cannabigerol (CBG), cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), by analysing their pharmacological activity on viability of endogenous BM-MSCs as well as their ability to alter BM-MSC proliferation and differentiation into mature adipocytes. We provide evidence that CBD, CBDA, CBGA and THCV (5 µM) increase the number of viable BM-MSCs; whereas only CBG (5 µM) and CBD (5 µM) alone or in combination promote BM-MSCs maturation into adipocytes via distinct molecular mechanisms. These effects were revealed both in vitro and in vivo. In addition, phytocannabinoids prevented the insulin signalling impairment induced by palmitate in adipocytes differentiated from BM-MSCs. Our study highlights phytocannabinoids as a potential novel pharmacological tool to regain control of functional adipose tissue in unregulated energy homeostasis often occurring in metabolic disorders including type 2 diabetes mellitus (T2DM), aging and lipodystrophy.


Assuntos
Adipogenia/efeitos dos fármacos , Canabinoides/farmacologia , Cannabis/química , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células da Medula Óssea/citologia , Canabinoides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Endocanabinoides/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
7.
J Neuroinflammation ; 16(1): 274, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878942

RESUMO

BACKGROUND: Palmitoylethanolamide (PEA) is a pleiotropic endogenous lipid mediator currently used as a "dietary food for special medical purposes" against neuropathic pain and neuro-inflammatory conditions. Several mechanisms underlie PEA actions, among which the "entourage" effect, consisting of PEA potentiation of endocannabinoid signaling at either cannabinoid receptors or transient receptor potential vanilloid type-1 (TRPV1) channels. Here, we report novel molecular mechanisms through which PEA controls mast cell degranulation and substance P (SP)-induced histamine release in rat basophilic leukemia (RBL-2H3) cells, a mast cell model. METHODS: RBL-2H3 cells stimulated with SP were treated with PEA in the presence and absence of a cannabinoid type-2 (CB2) receptor antagonist (AM630), or a diacylglycerol lipase (DAGL) enzyme inhibitor (OMDM188) to inhibit the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). The release of histamine was measured by ELISA and ß-hexosaminidase release and toluidine blue staining were used as indices of degranulation. 2-AG levels were measured by LC-MS. The mRNA expression of proposed PEA targets (Cnr1, Cnr2, Trpv1, Ppara and Gpr55), and of PEA and endocannabinoid biosynthetic (Napepld, Dagla and Daglb) and catabolic (Faah, Naaa and Mgl) enzymes were also measured. The effects of PEA on the activity of DAGL-α or -ß enzymes were assessed in COS-7 cells overexpressing the human recombinant enzyme or in RBL-2H3 cells, respectively. RESULTS: SP increased the number of degranulated RBL-2H3 cells and triggered the release of histamine. PEA counteracted these effects in a manner antagonized by AM630. PEA concomitantly increased the levels of 2-AG in SP-stimulated RBL-2H3 cells, and this effect was reversed by OMDM188. PEA significantly stimulated DAGL-α and -ß activity and, consequently, 2-AG biosynthesis in cell-free systems. Co-treatment with PEA and 2-AG at per se ineffective concentrations downmodulated SP-induced release of histamine and degranulation, and this effect was reversed by OMDM188. CONCLUSIONS: Activation of CB2 underlies the inhibitory effects on SP-induced RBL-2H3 cell degranulation by PEA alone. We demonstrate for the first time that the effects in RBL-2H3 cells of PEA are due to the stimulation of 2-AG biosynthesis by DAGLs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Degranulação Celular/efeitos dos fármacos , Etanolaminas/farmacologia , Lipase Lipoproteica/metabolismo , Mastócitos/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Amidas , Animais , Linhagem Celular Tumoral , Técnicas In Vitro , Mastócitos/enzimologia , Ratos , Substância P/farmacologia
8.
Biochim Biophys Acta Gen Subj ; 1863(3): 586-597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611848

RESUMO

BACKGROUND: The nuclear Peroxisome Proliferator Activated Receptors (PPARs) are ligand-activated transcription factors playing a fundamental role in energy homeostasis and metabolism. Consequently, functional impairment or dysregulation of these receptors lead to a variety of metabolic diseases. While some phytocannabinoids (pCBs) are known to activate PPARγ, no data have been reported so far on their possible activity at PPARα. METHODS: The putative binding modes of pCBs into PPARα/γ Ligand Binding Domains were found and assessed by molecular docking and molecular dynamics. Luciferase assays validated in silico predictions whereas the biological effects of such PPARα/γ ligands were assessed in HepG2 and 3T3L1 cell cultures. RESULTS: The in silico study identified cannabigerolic acid (CBGA), cannabidiolic acid (CBDA) and cannabigerol (CBG) from C. sativa as PPARα/γ dual agonists, suggesting their binding modes toward PPARα/γ isoforms and predicting their activity as full or partial agonists. These predictions were confirmed by luciferase functional assays. The resulting effects on downstream gene transcription in adipocytes and hepatocytes were also observed, establishing their actions as functional dual agonists. CONCLUSIONS: Our work broadens the activity spectrum of CBDA, CBGA and CBG by providing evidence that these pCBs act as dual PPARα/γ agonists with the ability to modulate the lipid metabolism. GENERAL SIGNIFICANCE: Dual PPARα/γ agonists have emerged as an attractive alternative to selective PPAR agonists to treat metabolic disorders. We identified some pCBs as dual PPARα/γ agonists, potentially useful for the treatment of dyslipidemia and type 2 diabetes mellitus.


Assuntos
Canabinoides/análise , Canabinoides/isolamento & purificação , PPAR alfa/agonistas , PPAR gama/agonistas , Compostos Fitoquímicos , Células 3T3-L1 , Animais , Células COS , Canabinoides/química , Canabinoides/farmacologia , Chlorocebus aethiops , Biologia Computacional , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Elementos de Resposta/efeitos dos fármacos
9.
J Physiol Biochem ; 72(2): 183-99, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26880264

RESUMO

The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.


Assuntos
Endocanabinoides/metabolismo , Regulação da Expressão Gênica , Atividade Motora , Obesidade/terapia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/metabolismo , Amidas , Animais , Ácidos Araquidônicos/metabolismo , Composição Corporal , Dieta Hiperlipídica/efeitos adversos , Etanolaminas/metabolismo , Glicerídeos/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Gordura Intra-Abdominal/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ácidos Oleicos/metabolismo , Especificidade de Órgãos , Ácidos Palmíticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Gordura Subcutânea Abdominal/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Aumento de Peso
10.
J Leukoc Biol ; 99(4): 531-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26467187

RESUMO

Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling in cancer and chronic inflammation.


Assuntos
Regulação da Expressão Gênica , Interleucina-6/biossíntese , Macrófagos/metabolismo , Receptor CB1 de Canabinoide/biossíntese , Receptor CB2 de Canabinoide/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/biossíntese , Canabinoides/farmacologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino
11.
J Neurochem ; 115(2): 411-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20681950

RESUMO

In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.


Assuntos
Córtex Cerebral/citologia , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Canais de Potássio Cálcio-Ativados/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Área Sob a Curva , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Dopamina/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Norepinefrina/metabolismo , Peptídeos/farmacologia , Canais de Potássio Cálcio-Ativados/deficiência , Ratos , Ratos Wistar , Sinaptofisina/metabolismo , Sinaptossomos/metabolismo , Transfecção/métodos , Trítio/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA