Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946316

RESUMO

Magnetic iron oxide nanoparticles are the most desired nanomaterials for biomedical applications due to their unique physiochemical properties. A facile single-step process for the preparation of a highly stable and biocompatible magnetic colloidal suspension based on citric-acid-coated magnetic iron oxide nanoparticles used as an effective heating source for the hyperthermia treatment of cancer cells is presented. The physicochemical analysis revealed that the magnetic colloidal suspension had a z-average diameter of 72.7 nm at 25 °C with a polydispersity index of 0.179 and a zeta potential of -45.0 mV, superparamagnetic features, and a heating capacity that was quantified by an intrinsic loss power analysis. Raman spectroscopy showed the presence of magnetite and confirmed the presence of citric acid on the surfaces of the magnetic iron oxide nanoparticles. The biological results showed that breast adenocarcinoma cells (MDA-MB-231) were significantly affected after exposure to the magnetic colloidal suspension with a concentration of 30 µg/mL 24 h post-treatment under hyperthermic conditions, while the nontumorigenic (MCF-10A) cells exhibited a viability above 90% under the same thermal setup. Thus, the biological data obtained in the present study clearly endorse the need for further investigations to establish the clinical biological potential of synthesized magnetic colloidal suspension for magnetically triggered hyperthermia.

2.
J Cell Mol Med ; 18(6): 962-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24629135

RESUMO

There are few major morphologies of cell death that have been described so far: apoptosis (type I), cell death associated with autophagy (type II), necrosis (type III) and anchorage-dependent mechanisms-anoikis. Here, we show for the first time a possibly novel mechanism inducing tumour cell death under in vitro conditions-enucleation. We pursued the influence of colloidal suspensions of Fe3 O4 nanoparticles on tumour cell lines (SK-BR-3 and MCF-7 breast cancer cell lines) grown according to standard cell culture protocols. Magnetite nanoparticles were prepared by combustion synthesis and double layer coated with oleic acid. Scanning and transmission electron microscopy revealed that tumour cells developed a network of intracytoplasmic stress fibres, which induce extrusion of nuclei, and enucleated cells die. Normal adult mesenchymal stem cells, used as control, did not exhibit the same behaviour. Intact nuclei were found in culture supernatant of tumour cells, and were visualized by immunofluorescence. Enucleation as a potential mechanism of tumour cell death might open new horizons in cancer biology research and development of therapeutic agents capable of exploiting this behaviour.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/ultraestrutura , Compostos Férricos/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Adulto , Morte Celular , Células Cultivadas , Feminino , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA