Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014364

RESUMO

The flora of Kazakhstan is characterized by its wide variety of different types of medicinal plants, many of which can be used on an industrial scale. The Traditional Kazakh Medicine (TKM) was developed during centuries based on the six elements of ancient Kazakh theory, associating different fields such as pharmacology, anatomy, pathology, immunology and food nursing as well as disease prevention. The endemic Artemisia L. species are potential sources of unique and new natural products and new chemical structures, displaying diverse bioactivities and leading to the development of safe and effective phytomedicines against prevailing diseases in Kazakhstan and the Central Asia region. This review provides an overview of Artemisia species from Central Asia, particularly traditional uses in folk medicine and the recent numerous phytochemical and pharmacological studies. The review is done by the methods of literature searches in well-known scientific websites (Scifinder and Pubmed) and data collection in university libraries. Furthermore, our aim is to search for promising and potentially active Artemisia species candidates, encouraging us to analyze Protein Tyrosine Phosphatase 1B (PTP1B), α-glucosidase and bacterial neuraminidase (BNA) inhibition as well as the antioxidant potentials of Artemisia plant extracts, in which endemic species have not been explored for their secondary metabolites and biological activities so far. The main result of the study was that, for the first time, the species Artemisia scopiformis Ledeb. Artemisia albicerata Krasch., Artemisia transiliensis Poljakov, Artemisia schrenkiana Ledeb., Artemisia nitrosa Weber and Artemisia albida Willd. ex Ledeb. due to their special metabolites, showed a high potential for α-glucosidase, PTP1B and BNA inhibition, which is associated with diabetes, obesity and bacterial infections. In addition, we revealed that the methanol extracts of Artemisia were a potent source of polyphenolic compounds. The total polyphenolic contents of Artemisia extracts were correlated with antioxidant potential and varied according to plant origin, the solvent of extraction and the analytical method used. Consequently, oxidative stress caused by reactive oxygen species (ROS) may be managed by the dietary intake of current Artemisia species. The antioxidant potentials of the species A. schrenkiana, A. scopaeformis, A. transiliensis and Artemisia scoparia Waldst. & Kitam. were also promising. In conclusion, the examination of details between different Artemisia species in our research has shown that plant materials are good as an antioxidant and eznyme inhibitory functional natural source.


Assuntos
Artemisia , Antioxidantes/farmacologia , Artemisia/química , Etnofarmacologia , Humanos , Compostos Fitoquímicos/química , Fitoterapia , Extratos Vegetais/química , alfa-Glucosidases
2.
Molecules ; 26(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572569

RESUMO

The anticancer activities of Rubia cordifolia and its constituents have been reported earlier, but their influence on the crosstalk of complex cancer-related signaling metabolic pathways (i.e., transcription factors; TF) has not yet been fully investigated. In this study, R. cordifolia root extract was subjected to the cancer signaling assay based bioactivity-guided fractionation, which yielded the following compounds viz., three anthraquinones, namely alizarin (1), purpurin (2), and emodin (3); two lignans, namely eudesmin (4) and compound 5; and two cyclic hexapeptides, namely deoxybouvardin RA-V (6), and a mixture of 6+9 (RA-XXI). The structures of the isolated compounds were determined by NMR spectroscopy and HRESIMS. The isolated compounds 1, 2, 3, 6, and a mixture of 6+9 were tested against a panel of luciferase reporter genes that assesses the activity of a wide-range of cancer-related signaling pathways. In addition, reference anthraquinones viz., chrysophanol (11), danthron (12), quinizarin (13), aloe-emodin (14), and α-lapachone (15) were also tested. Among the tested compounds, the cyclic hexapeptide 6 was found to be very active against several signaling pathways, notably Wnt, Myc, and Notch with IC50 values of 50, 75, and 93 ng/mL, respectively. Whereas, the anthraquinones exhibited very mild or no inhibition against these signaling pathways. Compound 6 being the most active, we tested it for stability in simulated intestinal (SIF) and gastric fluids (SGF), since the stability in biological fluid is a key short-coming of cyclic hexapeptides. The anticancer activity of 6 was found to remain unchanged before and after the treatment of simulated gastric/intestinal fluids, indicating that RA-V was stable. As a result, it could be bioavailable when orally used in therapeutics and possibly a drug candidate for cancer treatment. The mechanism for the preferential inhibition of these pathways and the possible crosstalk effect with other previously reported signaling pathways has been discussed.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Peptídeos Cíclicos/farmacologia , Rubia/química , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
3.
J Nat Prod ; 77(9): 1987-91, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25084548

RESUMO

Antileishmanial bioassay guided fractionation of Geosmithia langdonii has resulted in the isolation and identification of two new compounds (1 and 2) together with 10 known compounds (3-12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as mass spectrometry. The absolute configuration at C4, C5, and C6 of 2 was determined as R using a modified Mosher esterification method and NOESY correlations. The extracts and the isolated metabolites were evaluated for their antileishmanial activities. Compounds 3, 9, 11, and 12 were found to be active against Leishmania donovani with IC50 values of 6.9, 3.3, 8.5, and 9.2 µM, respectively, while compounds 1, 5, and 10 showed lower activities against L. donovani with IC50 values of 13.0, 47.3, and 34.0 µM, respectively.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Compostos Benzidrílicos/farmacologia , Cicloexanonas/isolamento & purificação , Cicloexanonas/farmacologia , Hypocreales/química , Leishmania donovani/efeitos dos fármacos , Salicilatos/isolamento & purificação , Salicilatos/farmacologia , Antineoplásicos Fitogênicos/química , Aspergillus fumigatus/efeitos dos fármacos , Compostos Benzidrílicos/química , Candida/efeitos dos fármacos , Cicloexanonas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Complexo Mycobacterium avium/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Salicilatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA