Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 143(10): 865-870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779016

RESUMO

Insulin therapy is one of the central treatments for diabetes mellitus. Insulin-derived localized amyloidosis (IDLA) is a known skin-related complication of insulin injection. This is one of the causes of poor glycemic control in diabetic patients on insulin therapy. The aim of this study was to review and update the findings on the extent and mechanism of reduced insulin absorption in IDLA. A literature search was conducted on decreased insulin absorption and its mechanisms, and nine references were selected, with seven of these on decreased insulin absorption and four on mechanisms. Insulin absorption at IDLA sites was reported to be 27-94% lower compared with normal sites. In addition, a comparison between nonpalpable and palpable IDLA sites revealed a significant decrease in insulin absorption at the palpable IDLA site. The mechanism of insulin malabsorption was found to be a reduction in insulin absorption at the palpable IDLA sites. Four mechanisms of decreased insulin absorption were identified: decreased subcutaneous blood flow, adsorption of administered insulin onto insulin amyloid fibers, impaired diffusion of insulin subcutaneously, and physical factors such as shaking of the insulin preparation. These mechanisms should be investigated in vivo in the future.


Assuntos
Amiloidose , Diabetes Mellitus , Humanos , Insulina , Diabetes Mellitus/tratamento farmacológico , Amiloidose/tratamento farmacológico , Amiloidose/induzido quimicamente , Pele , Injeções Subcutâneas
2.
PLoS One ; 13(3): e0193830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518109

RESUMO

Skin barrier function is often deficient in obese individuals, but the underlying molecular mechanisms remain unclear. This study investigated how skin structure and lipid metabolism, factors strongly associated with barrier function, differed among 50 Japanese women of greatly varying body mass index (BMI). Subjects receiving breast reconstruction surgery were chosen for analysis to obtain skin samples from the same site. The subjects were classified into two groups, control (BMI < 25 kg/m2) and obese (25 kg/m2 ≤ BMI < 35 kg/m2), according to standards in Japan. Hematoxylin and eosin staining was used to assess skin thickness, Ki-67 immunostaining to examine keratinocyte proliferation, and real-time polymerase chain reaction to measure skin expression levels of genes associated with lipid metabolism. Total lipids, cholesterol, and fatty acids were also measured from these same skin samples. In the obese group, structural changes included epidermal thickening and an increase in the number of Ki-67-positive (proliferating) cells. Both skin cholesterol and fatty acid levels exhibited an "inverted-U" relationship with BMI, suggesting that there is an optimal BMI for peak lipid content and barrier function. Decreased lipid levels at higher BMI were accompanied by downregulated expression of PPARδ and other genes related to lipid metabolism, including those encoding acetyl-CoA carboxylase and HMG-CoA reductase, the rate-limiting enzymes for fatty acid and cholesterol synthesis, respectively. Thus, elevated BMI may lead to deficient skin barrier function by suppressing local lipid synthesis.


Assuntos
Metabolismo dos Lipídeos , Obesidade/metabolismo , Pele/metabolismo , Adulto , Índice de Massa Corporal , Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Proliferação de Células , Feminino , Expressão Gênica , Humanos , Japão , Queratinócitos/metabolismo , Queratinócitos/patologia , Antígeno Ki-67/metabolismo , Mamoplastia , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/patologia , Tamanho do Órgão , Pele/patologia , Adulto Jovem
3.
J Nat Med ; 71(1): 59-67, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27592007

RESUMO

Obesity results from excessive energy intake and physical inactivity, and predisposes one to various diseases. One of these reasons is that enlargement of adipocytes raises the lipid metabolic abnormalities that affect various organs. The skin is one such organ, and it has been reported that subcutaneous adipocyte cells secrete various factors and these factors are involved in reduction of dermal collagen fibers and fragility of the skin in obesity. The present study explored the efficacy of Kaempferia parviflora (KP) in preventing obesity-induced dermatopathy. We used Tsumura Suzuki obese diabetes (TSOD) mice as an obesity model. TSOD mice were fed a standard diet (MF) mixed with either an ethanol extract from KP (KPE), polymethoxyflavonoid-rich extract from KP (PMF), or polymethoxyflavonoid-poor extract from KP (X). We then evaluated the effect of these three KP fractions on aging-like skin damage induced by UVB irradiation. KPE and PMF caused a significant decrease of mouse body weight, and suppressed the increase in the thickness of the subcutaneous fat layer. In addition, KPE shifted the frequency of subcutaneous adipocyte sizes towards smaller cells possibly via its polypharmacological actions. Scanning electron microscopy revealed that the stereostructure of the collagenous fibers in the dermis was better retained in the KPE and PMF groups, in that order. These results offer the first evidence that KPE can attenuate obesity-induced dermatopathy more effectively than PMF, suggesting that KPE (or KP) might be a candidate supplement for preventing obesity-related skin disorders.


Assuntos
Obesidade/complicações , Extratos Vegetais/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Dermatopatias Metabólicas/tratamento farmacológico , Zingiberaceae/química , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Obesos , Dermatopatias Metabólicas/etiologia
4.
Biol Res Nurs ; 14(2): 180-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21444332

RESUMO

Both physiological skin aging and pathologic photo-aging caused by ultraviolet (UV) irradiation are mediated by latent inflammation and oxidative stress. Although numerous animal skin-aging models have used UV irradiation, most require massive doses or long-term irradiation. To establish a more refined skin-aging model, we focused on an animal model of metabolic syndrome (MS) because MS involves damage to various organs via oxidative stress or inflammation, similar to the changes associated with aging. We hypothesized that MS skin might exhibit more aging-like changes after milder, shorter-term UV irradiation than would normal animal skin under similar conditions, thus providing a useful model for skin aging. The authors therefore examined the skin from Tsumura Suzuki obese diabetic (TSOD) mice (MS model) and control Tsumura Suzuki non-obese (TSNO) mice before and after UV irradiation. Skin from TSOD mice had a thinner epidermis and dermis, a thicker fatty layer, reduced density and convolution of the fragmented collagen fibers, and upregulated expression of tumor necrosis factor (TNF)-α, a dual marker for inflammation and aging, compared to the skin from TSNO mice. UV irradiation affected TSOD skin more severely than TSNO skin, resulting in various changes resembling those in aged human skin, including damage to the dermis and subcutaneous fatty tissue, infiltration of inflammatory cells, and further upregulation of TNF-α expression. These results suggest that UV-irradiated TSOD mice may provide a new model of skin aging and imply that skin from humans with MS is more susceptible to UV- or aging-related damage than normal human skin.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Síndrome Metabólica/patologia , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Sequência de Bases , Primers do DNA , Imuno-Histoquímica , Masculino , Reação em Cadeia da Polimerase , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA