Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Clin Case Rep ; 12(9): e9368, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39206069

RESUMO

A T217M heterozygous mutation in the SLC22A12 gene caused renal hypouricemia; this patient with IgA nephropathy had no findings other than IgA nephropathy on renal biopsy. Hypouricemia was susceptible to oxidative stress, but IgA nephropathy in the patient with hypouricemia could be treated with steroid pulse therapy without adverse events.

2.
J Biol Chem ; 300(8): 107524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960035

RESUMO

Previous studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain. In the absence of XOR, hypoxanthine will be preserved and available for incorporation into the purine salvage pathway. To clarify the importance of salvage in the brain, we tested using human-induced pluripotent stem cell-derived neuronal cells. Stable isotope analyses showed that the purine salvage pathway was more effective for ATP synthesis than purine de novo synthesis. Blood uric acid levels were related to the intracellular adenylate pool (ATP + ADP + AMP), and reduced levels of this pool result in lower uric acid levels. XOR inhibitors are related to extracellular hypoxanthine levels available for uptake into the purine salvage pathway by inhibiting the oxidation of hypoxanthine to xanthine and uric acid in various organs where XOR is present and can prevent further decreases in the intracellular adenylate pool under stress. Furthermore, adding precursors of the pentose phosphate pathway enhanced hypoxanthine uptake, indicating that purine salvage is activated by phosphoribosyl pyrophosphate replenishment. These findings resolve previous contradictions regarding XOR products and provide new insights into clinical studies. It is suggested that therapeutic strategies maximizing maintenance of intracellular adenylate levels may effectively treat pathological conditions associated with ischemia and energy depletion.


Assuntos
Encéfalo , Purinas , Ácido Úrico , Xantina Desidrogenase , Humanos , Purinas/metabolismo , Encéfalo/metabolismo , Xantina Desidrogenase/metabolismo , Ácido Úrico/metabolismo , Hipoxantina/metabolismo , Masculino , Neurônios/metabolismo , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Via de Pentose Fosfato , Pessoa de Meia-Idade , Trifosfato de Adenosina/metabolismo , Idoso , Adulto
3.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
4.
Biomolecules ; 13(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892201

RESUMO

The prevalence of patients with hyperuricemia or gout is increasing worldwide. Hyperuricemia and gout are primarily attributed to genetic factors, along with lifestyle factors like consuming a purine-rich diet, alcohol and/or fructose intake, and physical activity. While numerous studies have reported various comorbidities linked to hyperuricemia or gout, the range of these associations is extensive. This review article focuses on the relationship between uric acid and thirteen specific domains: transporters, genetic factors, diet, lifestyle, gout, diabetes mellitus, metabolic syndrome, atherosclerosis, hypertension, kidney diseases, cardiovascular diseases, neurological diseases, and malignancies. The present article provides a comprehensive review of recent developments in these areas, compiled by experts from the Young Committee of the Japanese Society of Gout and Uric and Nucleic Acids. The consolidated summary serves to enhance the global comprehension of uric acid-related matters.


Assuntos
Gota , Hiperuricemia , Síndrome Metabólica , Humanos , Ácido Úrico , Dieta
5.
Pflugers Arch ; 475(4): 489-504, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749388

RESUMO

Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.


Assuntos
Transportadores de Ânions Orgânicos , Ácido Úrico , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Ácido Ascórbico/metabolismo , Transporte Biológico , Mamíferos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Sódio Acoplados à Vitamina C/genética , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Ácido Úrico/metabolismo
6.
Intern Med ; 62(18): 2725-2730, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36754409

RESUMO

Exercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes. We herein report a 16-year-old Japanese football player with familial RHUC with compound heterozygous mutations in urate transporter 1 (URAT1) who presented with recurrent EIAKI. As prophylaxis (hydration during exercise) could not prevent EIAKI, febuxostat was initiated. EIAKI was not observed for 16 months despite exercising intensively. Hence, non-purine-selective xanthine oxidoreductase inhibitors may decrease the incidence of EIAKI in athletes with RHUC.


Assuntos
Injúria Renal Aguda , Transportadores de Ânions Orgânicos , Humanos , Adolescente , Xantina Desidrogenase , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Inibidores Enzimáticos
7.
Sci Rep ; 13(1): 93, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639673

RESUMO

Two-thirds of urate is excreted via the renal pathway and the remaining one-third via the extra-renal pathway, the latter mainly via the intestine in healthy individuals. ABCG2, a urate exporter, is expressed in various tissues including the kidney and intestine, and its dysfunction leads to hyperuricemia and gout. ABCG2 is regarded as being responsible for most of the extra-renal urate excretion. However, the extra-renal urate excretion capacity via ABCG2 remains undefined in end-stage kidney diseases. Therefore, we evaluated the capacity of extra-renal ABCG2 using 123 anuric hemodialysis patients whose urate excretion depended on only the extra-renal pathway. ABCG2 function in each participant was estimated based on ABCG2 dysfunctional variants. We computed the uric acid pool (PoolUA) from bodyweight and serum urate level (SUA) using previously reported radio-isotopic data, and we analyzed the association between ABCG2 function and the PoolUA. SUA and PoolUA increased significantly with ABCG2 dysfunction, and extra-renal ABCG2 could excrete up to approximately 60% of the daily uric acid turnover in hemodialysis patients. Our findings indicate that the extra-renal urate excretion capacity can expand with renal function decline and highlight that the extra-renal pathway is particularly important in the uric acid homeostasis for patients with renal dysfunction.


Assuntos
Gota , Hiperuricemia , Humanos , Ácido Úrico , Rim/metabolismo , Gota/genética , Gota/metabolismo , Diálise Renal , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
8.
Am J Kidney Dis ; 81(2): 134-144.e1, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35810827

RESUMO

RATIONALE & OBJECTIVE: Treatment of asymptomatic hyperuricemia is not commonly implemented. However, it is unclear whether urate deposition that begins during asymptomatic hyperuricemia can induce nephropathy. Dysfunction of ATP-binding cassette subfamily G member 2 (ABCG2), a urate efflux transporter, leads to elevated serum uric acid concentration (SUA). We investigated the association between asymptomatic hyperuricemia and decreased estimated glomerular filtration rate (eGFR), and the impact of ABCG2 on this relationship. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 1,885 Japanese adults undergoing routine health care follow-up between 2007 and 2017 who had eGFR ≥60 mL/min/1.73 m2, of which 311 had asymptomatic hyperuricemia (SUA >7.0 mg/dL). Study participants were classified into 3 categories of estimated ABCG2 function (full, 75%, and ≤50% function). PREDICTORS: Baseline SUA and estimated ABCG2 function. OUTCOME: Change in eGFR over time. ANALYTICAL APPROACH: Linear mixed-effect models were used to analyze the relationship between asymptomatic hyperuricemia, ABCG2 function, and eGFR decline. RESULTS: Asymptomatic hyperuricemia was negligibly associated with eGFR decline overall. However, among those with eGFR 60-89 mL/min/1.73 m2 and ≤50% ABCG2 function, eGFR decline was associated with asymptomatic hyperuricemia (P = 0.03). ABCG2 was not associated with eGFR reductions when the SUA was <6.0 mg/dL. Among participants with SUA ≥6.0 mg/dL and eGFR 60-89 mL/min/1.73 m2, ≤50% ABCG2 function was associated with approximately 1.2-fold faster eGFR decline compared with fully functional ABCG2 (P = 0.02). Among the participants with SUA ≥6.0 mg/dL and eGFR 60-89 mL/min/1.73 m2, the adjusted eGFR slopes (given as mean ± standard error of the mean, in mL/min/1.73 m2 per year) were -0.946 ± 0.049, -1.040 ± 0.046, and -1.148 ± 0.069 for full, 75%, and ≤50% ABCG2 function, respectively. LIMITATIONS: Lack of measurement of urinary urate and uremic toxins that are known to be transported by ABCG2, and no independent validation cohort. CONCLUSIONS: Asymptomatic hyperuricemia was not associated with eGFR decline, except when in the presence of ≤50% ABCG2 function. PLAIN-LANGUAGE SUMMARY: The urate transporter ABCG2 is a protein that regulates serum urate concentrations; when dysfunctional, it can lead to elevated serum concentrations of this compound (ie, hyperuricemia). Although persistent hyperuricemia induces gout and kidney injury, the effects on organs during the asymptomatic phase have yet to be established. Therefore, to clarify the relationship between ABCG2, asymptomatic hyperuricemia, and kidney function, we conducted a retrospective cohort study of 1,885 healthy participants, including 311 participants with asymptomatic hyperuricemia. We found that the coexistence of asymptomatic hyperuricemia and severe ABCG2 dysfunction was associated with the age-dependent decline in kidney function. We concluded that asymptomatic hyperuricemia represents a risk factor for chronic kidney disease, at least in individuals with highly dysfunctional ABCG2. This new finding highlights the potential importance of ABCG2 in the pathogenesis of hyperuricemia-induced kidney injury.


Assuntos
Hiperuricemia , Insuficiência Renal Crônica , Adulto , Humanos , Ácido Úrico , Estudos Retrospectivos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias
9.
Biomedicines ; 10(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35884889

RESUMO

Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.

10.
CEN Case Rep ; 11(2): 177-183, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34554426

RESUMO

Hypouricemia in kidney transplant (KT) recipients is rare since they usually have subnormal kidney function which raises serum uric acid level. Recently, interests in pathogenesis of hypouricemia have been increasing due to the understanding of the role of uric acid transporter in renal hypouricemia (RHUC). We herein report the case of RHUC consequently developed in a KT recipient from a living donor with RHUC diagnosed by the detailed urinary and genetic test. A 73-year-old Japanese man underwent KT, and the donor was his wife who had hypouricemia [serum uric acid (S-UA) 0.6 mg/dL]. Nine months after KT, the recipient's S-UA was low (1.5 mg/dL) with serum creatinine (S-Cr) of 1.56 mg/dL, and fractional excretion of UA (FEUA) was high (59.7%; normal < 10%), indicating RHUC. Regarding the donor's information, S-Cr, S-UA, and FEUA were 0.95 mg/dL, 1.0 mg/dL, and 54.5%, respectively. To investigate further on the pathogenesis of RHUC in both the recipient and the donor, we performed genetic tests. The donor had a homozygous mutation of W258X in the SLC22A12 gene and the recipient had a wild type of W258X. Finally, we reviewed the previous literature on RHUC among KT recipients and discussed the strategy of follow-up for these patients.


Assuntos
Transplante de Rim , Transportadores de Ânions Orgânicos , Idoso , Feminino , Humanos , Rim , Transplante de Rim/efeitos adversos , Doadores Vivos , Masculino , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal , Ácido Úrico , Cálculos Urinários
11.
Rheumatology (Oxford) ; 61(3): 1276-1281, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34255816

RESUMO

OBJECTIVES: Up to 0.3% of Japanese have hypouricaemia. Most cases appear to result from a hereditary disease, renal hypouricaemia (RHUC), which causes exercise-induced acute kidney injury and urolithiasis. However, to what extent RHUC accounts for hypouricaemia is not known. We therefore investigated its frequency and evaluated its risks by genotyping a general Japanese population. METHODS: A cohort of 4993 Japanese was examined by genotyping the non-functional variants R90H (rs121907896) and W258X (rs121907892) of URAT1/SLC22A12, the two most common causative variants of RHUC in Japanese. RESULTS: Participants' fractional excretion of uric acid and risk allele frequencies markedly increased at lower serum uric acid (SUA) levels. Ten participants (0.200%) had an SUA level ≤2.0 mg/dl and nine had R90H or W258X and were likely to have RHUC. Logistic regression analysis revealed these URAT1 variants to be significantly and independently associated with the risk of hypouricaemia and mild hypouricaemia (SUA ≤3.0 mg/dl) as well as sex, age and BMI, but these URAT1 variants were the only risks in the hypouricaemia population (SUA ≤2.0 mg/dl). W258X was only a risk in males with SUA ≤3.0 mg/dl. CONCLUSION: Our study accurately reveals the prevalence of RHUC and provides genetic evidence for its definition (SUA ≤2.0 mg/dl). We also show that individuals with SUA ≤3.0 mg/dl, especially males, are prone to RHUC. Our findings will help to promote a better epidemiological understanding of RHUC as well as more accurate diagnosis, especially in males with mild hypouricaemia.


Assuntos
Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Erros Inatos do Transporte Tubular Renal/genética , Cálculos Urinários/genética , Feminino , Variação Genética , Genótipo , Humanos , Japão/epidemiologia , Masculino , Erros Inatos do Transporte Tubular Renal/epidemiologia , Cálculos Urinários/epidemiologia
12.
J Chromatogr A ; 1657: 462570, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34607291

RESUMO

The purpose of this paper is to propose a simple method for daily inspections of a gas chromatography-mass spectrometry (GC-MS) system with an instrumental detection limit (IDL) as an indicator. A definition of DLs by ISO is 3.3σ where σ denotes the standard deviation (SD) of blank measurements. Estimation of σ is carried out according to the function of mutual information (FUMI) theory and actually with commercial software (TOCO19). An IDL which is a combination of a signal area, width and noise level is concluded to be a good indicator for daily inspections compared with each of its constituents. Methyl stearate is used as a standard material for the daily inspection of a programmed-temperature GC-MS system. A short chromatogram of 1800 data points (1.5 min) containing a target signal and background noise is fit for the IDL prediction by TOCO19. The relative SDs (RSDs) based on the theoretically estimated σ are shown to coincide with statistical results from repeated measurements within 95% confidence intervals. Column temperature is observed to affect IDLs through background fluctuation and then temperature-IDL relationship is examined in a range from 170 to 270 °C. Actual daily inspections over a month are demonstrated.


Assuntos
Projetos de Pesquisa , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção
13.
Rheumatology (Oxford) ; 60(11): 5224-5232, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33821957

RESUMO

OBJECTIVES: Gout, caused by chronic elevation of serum uric acid levels, is the commonest form of inflammatory arthritis. The causative effect of common and rare variants of ATP-binding cassette transporter G2 (ABCG2/BCRP) on gout risk has been studied, but little attention has been paid to the effect of common (rs121907892, p.W258X) and rare variants of urate transporter 1 (URAT1/SLC22A12) on gout, despite dysfunctional variants of URAT1 having been identified as pathophysiological causes of renal hypouricaemia. METHODS: To address this important but overlooked issue, we investigated the effects of these URAT1 variants on gout susceptibility, using targeted exon sequencing on 480 clinically defined gout cases and 480 controls of Japanese males in combination with a series of functional analyses of newly identified URAT1 variants. RESULTS: Our results show that both common and rare dysfunctional variants of URAT1 markedly decrease the risk of gout (OR 0.0338, reciprocal OR 29.6, P = 7.66 × 10-8). Interestingly, we also found that the URAT1-related protective effect on gout eclipsed the ABCG2-related causative effect (OR 2.30-3.32). Our findings reveal only one dysfunctional variant of URAT1 to have a substantial anti-gout effect, even in the presence of causative variants of ABCG2, a 'gout gene'. CONCLUSION: Our findings provide a better understanding of gout/hyperuricaemia and its aetiology that is highly relevant to personalized health care. The substantial anti-gout effect of common and rare variants of URAT1 identified in the present study support the genetic concept of a 'Common Disease, Multiple Common and Rare Variant' model.


Assuntos
Gota/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Adulto , Estudos de Casos e Controles , Variação Genética , Gota/sangue , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Proteção , Ácido Úrico/sangue
14.
Mol Genet Metab Rep ; 26: 100716, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33552910

RESUMO

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism that results from mutations in genes involved in molybdenum cofactor (Moco) biosynthesis. MoCD is characterized clinically by intractable seizures and severe, rapidly progressing neurodegeneration leading to death in early childhood in the majority of known cases. We report on a patient with an unusual late disease onset and mild phenotype, characterized by delayed development and a decline triggered by a febrile illness and a subsequent dystonic movement disorder. Magnetic resonance imaging showed abnormal signal intensities of the bilateral basal ganglia. Blood and urine chemistry tests demonstrated remarkably low serum and urinary uric acid levels. A urine sulfite test was positive. Specific diagnostic workup showed elevated levels of xanthine and hypoxanthine in serum with increased urinary sulfocysteine (SSC) levels. Genetic analysis revealed a homozygous missense mutation at c.1510C > T (p.504R > W) in exon 10 of the MOCS1 in isoform 7 (rs1387934803). At age 1 year 4 months, the patient was placed on a low protein diet to reduce cysteine load and accumulation of sulfite and SCC in tissues. At 3 months after introduction of protein restriction, the urine sulfite test became negative and the urine SCC level was decreased. After starting the protein restriction diet, dystonic movement improved, and the patient's course progressed without regression and seizures. Electroencephalogram findings were remarkably improved. This finding demonstrates that the dietary protein restriction suppresses disease progression in mild cases of MoCD and suggests the effectiveness of dietary therapy in MoCD.

15.
Ann Rheum Dis ; 79(5): 657-665, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238385

RESUMO

OBJECTIVES: Genome-wide meta-analyses of clinically defined gout were performed to identify subtype-specific susceptibility loci. Evaluation using selection pressure analysis with these loci was also conducted to investigate genetic risks characteristic of the Japanese population over the last 2000-3000 years. METHODS: Two genome-wide association studies (GWASs) of 3053 clinically defined gout cases and 4554 controls from Japanese males were performed using the Japonica Array and Illumina Array platforms. About 7.2 million single-nucleotide polymorphisms were meta-analysed after imputation. Patients were then divided into four clinical subtypes (the renal underexcretion type, renal overload type, combined type and normal type), and meta-analyses were conducted in the same manner. Selection pressure analyses using singleton density score were also performed on each subtype. RESULTS: In addition to the eight loci we reported previously, two novel loci, PIBF1 and ACSM2B, were identified at a genome-wide significance level (p<5.0×10-8) from a GWAS meta-analysis of all gout patients, and other two novel intergenic loci, CD2-PTGFRN and SLC28A3-NTRK2, from normal type gout patients. Subtype-dependent patterns of Manhattan plots were observed with subtype GWASs of gout patients, indicating that these subtype-specific loci suggest differences in pathophysiology along patients' gout subtypes. Selection pressure analysis revealed significant enrichment of selection pressure on ABCG2 in addition to ALDH2 loci for all subtypes except for normal type gout. CONCLUSIONS: Our findings on subtype GWAS meta-analyses and selection pressure analysis of gout will assist elucidation of the subtype-dependent molecular targets and evolutionary involvement among genotype, phenotype and subtype-specific tailor-made medicine/prevention of gout and hyperuricaemia.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aldeído-Desidrogenase Mitocondrial/genética , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla , Gota/genética , Proteínas de Neoplasias/genética , Estudos de Casos e Controles , Loci Gênicos , Genótipo , Gota/epidemiologia , Humanos , Incidência , Japão , Masculino , Fenótipo , Prognóstico , Valores de Referência , Medição de Risco , Índice de Gravidade de Doença
16.
Hum Cell ; 33(3): 559-568, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32180207

RESUMO

Dysfunctional variants of ATP-binding cassette transporter subfamily G member 2 (ABCG2), a urate transporter in the kidney and intestine, are the major causes of hyperuricemia and gout. A recent study found that ABCG2 is a major transporter of uremic toxins; however, few studies have investigated the relationship between ABCG2 gene polymorphisms and mortality. This prospective cohort study of 1214 hemodialysis patients investigated the association between serum uric acid levels and ABCG2 genotype and mortality. Genotyping of dysfunctional ABCG2 variants, Q126X (rs72552713) and Q141K (rs2231142), was performed using the patients' DNA. During the study period, 220 patients died. Lower serum uric acid levels were associated with higher mortality (hazard ratio [HR] 1.89, 95% confidence interval [CI] 1.14-3.10, P ≤ 0.001). ABCG2 dysfunction, estimated by genetic variants, had a significant positive association with serum uric acid levels (full function: 7.4 ± 1.2 mg/dl, 3/4 function: 7.9 ± 1.3 mg/dl, 1/2 function: 8.2 ± 1.4 mg/dl, ≤ 1/4 function: 8.7 ± 1.3 mg/dl, P ≤ 0.001). This association remained significant on multiple regression analysis. The Cox proportional hazard analysis indicated that the ABCG2 ≤ 1/4 function type was significantly associated with higher mortality (HR 6.66, 95% CI 2.49 to 17.8, P ≤ 0.001) than the other function types. These results showed that ABCG2 plays a physiologically important role in uric acid excretion, and that ABCG2 dysfunction is a risk factor for mortality in hemodialysis patients.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Estudos de Associação Genética , Proteínas de Neoplasias/genética , Polimorfismo Genético , Diálise Renal/mortalidade , Ácido Úrico/sangue , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
Ann Rheum Dis ; 78(10): 1430-1437, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31289104

RESUMO

OBJECTIVE: The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS: We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS: This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS: This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.


Assuntos
Contactinas/genética , Gota/genética , Hiperuricemia/genética , MicroRNAs/genética , Dedos de Zinco/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Aldeído-Desidrogenase Mitocondrial/genética , Doenças Assintomáticas , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Fatores de Risco , Ácido Úrico/sangue
19.
Drug Metab Pharmacokinet ; 34(1): 111-112, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30709683
20.
Biol Pharm Bull ; 42(1): 43-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606989

RESUMO

Urate is the final oxidation product of purine metabolism in humans. We have recently reported that the paracellular route is the major urate transport pathway across the blood-placental barrier. In this study, the mechanism of urate paracellular transport was investigated in several epithelial cell lines including Madin-Darby canine kidney (MDCK) type I, Lilly Laboratories cell-porcine kidney 1 (LLC-PK1) and Caco-2 cells. Very little urate passed through MDCK and LLC-PK1 cell layers. In contrast, one of the Caco-2 cell lines was found to be urate-permeable. This urate paracellular movement across Caco-2 cell layer was not inhibited by the urate transporter inhibitor benzbromarone but was partially inhibited by 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS), which inhibits chloride transport. Detection and quantification of claudin proteins that are important for paracellular transport of ions were performed by LC/MS. Claudins 1, 3, 4, 6, 7 and 12 were detected in urate-permeable cell lines, BeWo cells and Caco-2 cells. We compared claudin expression patterns in urate-permeable and urate-non-permeable Caco-2 cells by LC/MS and found that claudin 12 had a higher expression level in urate-permeable Caco-2 cells. Overexpression of these claudins in MDCK cells did not increase urate paracellular transport. Although there were differences in claudin expression pattern between urate-permeable and non-permeable cells, increased expression of single claudin alone did not explain paracellular permeability of urate.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Junções Íntimas/metabolismo , Ácido Úrico/metabolismo , Animais , Transporte Biológico/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Cães , Humanos , Células LLC-PK1 , Células Madin Darby de Rim Canino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA