Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
High Press Res ; 39(2): 225-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359910

RESUMO

Determining how enzymes in piezophilic microbes function at high pressure can give insights into how life adapts to living at high pressure. Here, the effects of pressure and temperature on loop motions are compared Escherichia coli (Ec) and Moritella profunda (Mp) dihydrofolate reductase (DHFR) via molecular dynamics simulations at combinations of the growth temperature and pressure of the two organisms. Analysis indicates that a flexible CD loop in MpDHFR is an adaptation for cold because it makes the adenosine binding subdomain more flexible. Also, analysis indicates that the Thr113-Glu27 hydrogen bond in MpDHFR is an adaptation for high pressure because it provides flexibility within the loop subdomain compared to the very strong Thr113-Asp27 hydrogen bond in EcDHFR, and affects the correlation of the Met20 and GH loops. In addition, the results suggest that temperature might affect external loops more strongly while pressure might affect motion between elements within the protein.

2.
Protein Sci ; 25(1): 12-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26271353

RESUMO

In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all-ferrous [Fe4 S4 ](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, "density functional theory plus Poisson Boltzmann" calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all-ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Azotobacter vinelandii/enzimologia , Transporte de Elétrons , Modelos Moleculares , Conformação Proteica
3.
J Chem Theory Comput ; 10(3): 1283-1291, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24803858

RESUMO

Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2]1-/0, [Cu(NCS)2]1-/0, [FeCl4]1-/0, and [Fe(SCH3)4]1-/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree-Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.

4.
J Biol Inorg Chem ; 18(1): 103-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23229112

RESUMO

The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.


Assuntos
Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Moleculares , Cristalografia por Raios X , Transporte de Elétrons , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
5.
J Inorg Biochem ; 101(3): 375-84, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17204331

RESUMO

We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.


Assuntos
Ferro/química , Espectroscopia de Ressonância Magnética/métodos , Pyrococcus furiosus/química , Rubredoxinas/química , Espectrofotometria Infravermelho/métodos , Análise de Fourier , Modelos Químicos , Estrutura Secundária de Proteína/efeitos da radiação , Análise Espectral Raman , Relação Estrutura-Atividade , Vibração
6.
Inorg Chem ; 44(5): 1202-4, 2005 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-15732958

RESUMO

Using potentially bidentate ligands (-SC2H4NH2), we produced [2Fe-2S]+ species of different coordination geometries by fission of [4Fe-4S]2+ complexes. Even though the ligands are monodentate in the cubane complexes, both mono- and bidentate complexes were observed in the [2Fe] fission products through self-assembly because of the high reactivity of the tricoordinate iron sites. The electronic structure of the [2Fe] species was probed using photoelectron spectroscopy and density functional calculations. It was found that tetracoordination significantly decreases the electron binding energies of the [2Fe] complexes, thus increasing the reducing capability of the [2Fe-2S]+ clusters.


Assuntos
Compostos de Ferro/química , Compostos de Enxofre/química , Estrutura Molecular , Oxirredução , Termodinâmica
7.
Proteins ; 57(3): 618-25, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15382226

RESUMO

Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clostridium/química , Mutação/genética , Rubredoxinas/química , Rubredoxinas/metabolismo , Valina/genética , Proteínas de Bactérias/genética , Clostridium/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Maleabilidade , Conformação Proteica , Rubredoxinas/genética , Solventes/química , Solventes/metabolismo , Relação Estrutura-Atividade , Valina/metabolismo
8.
J Biol Inorg Chem ; 9(4): 423-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15067525

RESUMO

Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation-reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was approximately 50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the Sgamma of Cys9 serves as a port for an electron acceptor. Lastly, the Fe-S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between Sgamma of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.


Assuntos
Clostridium/química , Transporte de Elétrons , Rubredoxinas/química , Rubredoxinas/metabolismo , Água/química , Substituição de Aminoácidos , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Oxirredução , Conformação Proteica , Rubredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA