Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(5): eadd3607, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724222

RESUMO

Every year, millions of brain magnetic resonance imaging (MRI) scans are acquired in hospitals across the world. These have the potential to revolutionize our understanding of many neurological diseases, but their morphometric analysis has not yet been possible due to their anisotropic resolution. We present an artificial intelligence technique, "SynthSR," that takes clinical brain MRI scans with any MR contrast (T1, T2, etc.), orientation (axial/coronal/sagittal), and resolution and turns them into high-resolution T1 scans that are usable by virtually all existing human neuroimaging tools. We present results on segmentation, registration, and atlasing of >10,000 scans of controls and patients with brain tumors, strokes, and Alzheimer's disease. SynthSR yields morphometric results that are very highly correlated with what one would have obtained with high-resolution T1 scans. SynthSR allows sample sizes that have the potential to overcome the power limitations of prospective research studies and shed new light on the healthy and diseased human brain.


Assuntos
Inteligência Artificial , Neuroimagem , Humanos , Estudos Prospectivos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
2.
Med Image Comput Comput Assist Interv ; 14(Pt 3): 659-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003756

RESUMO

Skull stripping is the first step in many neuroimaging analyses and its success is critical to all subsequent processing. Methods exist to skull strip brain images without gross deformities, such as those affected by Alzheimer's and Huntington's disease. However, there are no techniques for extracting brains affected by diseases that significantly disturb normal anatomy. Glioblastoma multiforme (GBM) is such a disease, as afflicted individuals develop large tumors that often require surgical resection. In this paper, we extend the ROBEX skull stripping method to extract brains from GBM images. The proposed method uses a shape model trained on healthy brains to be relatively insensitive to lesions inside the brain. The brain boundary is then searched for potential resection cavities using adaptive thresholding and the Random Walker algorithm corrects for leakage into the ventricles. The results show significant improvement over three popular skull stripping algorithms (BET, BSE and HWA) in a dataset of 48 GBM cases.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Crânio/patologia , Algoritmos , Neoplasias Encefálicas/diagnóstico , Ventrículos Cerebrais/patologia , Bases de Dados Factuais , Glioblastoma/diagnóstico , Humanos , Reconhecimento Automatizado de Padrão , Software , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA