Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(13): 5137-5148, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36944040

RESUMO

Effective density (ρeff) is an important property describing particle transportation in the atmosphere and in the human respiratory tract. In this study, the particle size dependency of ρeff was determined for fresh and photochemically aged particles from residential combustion of wood logs and brown coal, as well as from an aerosol standard (CAST) burner. ρeff increased considerably due to photochemical aging, especially for soot agglomerates larger than 100 nm in mobility diameter. The increase depends on the presence of condensable vapors and agglomerate size and can be explained by collapsing of chain-like agglomerates and filling of their voids and formation of secondary coating. The measured and modeled particle optical properties suggest that while light absorption, scattering, and the single-scattering albedo of soot particle increase during photochemical processing, their radiative forcing remains positive until the amount of nonabsorbing coating exceeds approximately 90% of the particle mass.


Assuntos
Atmosfera , Fuligem , Humanos , Idoso , Fuligem/análise , Fuligem/química , Tamanho da Partícula , Carvão Mineral , Aerossóis/análise
2.
Sci Total Environ ; 838(Pt 4): 156543, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679919

RESUMO

Black carbon (BC) is a component of ambient particulate matter which originates from incomplete combustion emissions. BC is regarded as an important short-lived climate forcer, and a significant public health hazard. These two concerns have made BC a focus in aerosol science. Even though, the toxicity of BC particles is well recognized, the mechanism of toxicity for BC as a part of the total gas and particle emission mixture from combustion is still largely unknown and studies concerning it are scarce. In the present study, using a novel thermophoresis-based air-liquid interface (ALI) in vitro exposure system, we studied the toxicity of combustion-generated aerosols containing high levels of BC, diluted to atmospheric levels (1 to 10 µg/m3). Applying multiple different aerosol treatments, we simulated different sources and atmospheric aging processes, and utilizing several toxicological endpoints, we thoroughly examined emission toxicity. Our results revealed that an organic coating on the BC particles increased the toxicity, which was seen as larger genotoxicity and immunosuppression. Furthermore, aging of the aerosol also increased its toxicity. A deeper statistical analysis of the results supported our initial conclusions and additionally revealed that toxicity increased with decreasing particle size. These findings regarding BC toxicity can be applied to support policies and technologies to reduce the most hazardous compositions of BC emissions. Additionally, our study showed that the thermophoretic ALI system is both a suitable and useful tool for toxicological studies of emission aerosols.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carbono/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade , Fuligem/análise , Fuligem/toxicidade
3.
Sci Total Environ ; 686: 382-392, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181524

RESUMO

The combustion of spruce logwood in a modern residential stove was found to emit polycyclic aromatic hydrocarbons (PAH) and oxygenated polycyclic aromatic hydrocarbons (OPAH) with emission factors of 404 µg MJ-1 of 35 analysed PAH, 317 µg MJ-1 of 11 analysed Oxy-PAH and 12.5 µg MJ-1 of 5 analysed OH-PAH, most of which are known as potential mutagens and carcinogens. Photochemical ageing in an oxidation flow reactor (OFR) degraded particle-bound PAH, which was also reflected in declining PAH toxicity equivalent (PAH-TEQ) values by 45 to 80% per equivalent day of photochemical ageing in the atmosphere. OPAH concentrations decreased less than PAH concentrations during photochemical ageing, supposedly due to their secondary formation, while 1-hydroxynaphthalene, 1,5-dihydroxynaphthalene and 1,8-naphthalaldehydic acid were significantly increased after ageing. Furthermore, secondary organic aerosol (SOA) formation and aromatic compounds not included in targeted analysis were investigated by thermal-optical carbon analysis (TOCA) hyphenate to resonance-enhanced multi-photon ionisation time-of-flight mass spectrometry (REMPI-TOFMS). The commonly used PAH-source indicators phenanthrene/anthracene, fluoranthene/pyrene, retene/chrysene, and indeno[cd]pyrene/benzo[ghi]perylene remained stable during photochemical ageing, enabling identification of wood combustion emissions in ambient air. On the other hand, benz[a]pyrene/benz[e]pyrene and benz[a]anthracene/chrysene were found to decrease with increasing photochemical age. Retene/chrysene was not a proper classifier for the wood combustion emissions of this study, possibly due to more efficient combustion than in open wood burning, from which this diagnostic ratio was initially derived. This study motivates in-depth investigation of degradation kinetics of particle-bound species on different combustion aerosol as well as the consequences of photochemical ageing on toxicity and identification of wood combustion emissions in ambient air.

4.
Inhal Toxicol ; 22 Suppl 2: 48-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21029031

RESUMO

There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.


Assuntos
Poluentes Atmosféricos/toxicidade , Biocombustíveis/toxicidade , Gasolina/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Emissões de Veículos/toxicidade , Animais , Catálise , Linhagem Celular , Quimiocina CXCL2/metabolismo , Ensaio Cometa , Testes Imunológicos de Citotoxicidade , Inflamação/metabolismo , Camundongos , Testes de Mutagenicidade , Estresse Oxidativo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA