RESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Amyloid-ß (Aß) accumulation triggers chronic neuroinflammation, initiating AD pathogenesis. Recent clinical trials for anti-Aß immunotherapy underscore that blood-based biomarkers have significant advantages and applicability over conventional diagnostics and are an unmet clinical need. To further advance ongoing clinical trials and identify novel therapeutic targets for AD, developing additional plasma biomarkers closely associated with pathogenic mechanisms downstream of Aß accumulation is critically important. To identify plasma metabolites reflective of neuroinflammation caused by Aß pathology, we performed untargeted metabolomic analyses of the plasma by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) and analyzed the potential roles of the identified metabolic changes in the brain neuroinflammatory response using the female App knock-in (AppNLGF) mouse model of Aß amyloidosis. The CE-TOFMS analysis of plasma samples from female wild-type (WT) and AppNLGF mice revealed that plasma levels of nicotinamide, a nicotinamide adenine dinucleotide (NAD+) precursor, were decreased in AppNLGF mice, and altered metabolite profiles were enriched for nicotinate/nicotinamide metabolism. In AppNLGF mouse brains, NAD+ levels were unaltered, but mRNA levels of NAD+-synthesizing nicotinate phosphoribosyltransferase (Naprt) and NAD+-degrading Cd38 genes were increased. These enzymes were induced in reactive astrocytes and microglia surrounding Aß plaques in the cortex and hippocampus of female AppNLGF mouse brains, suggesting neuroinflammation increases NAD+ metabolism. This study suggests plasma nicotinamide could be indicative of the neuroinflammatory response and that nicotinate and nicotinamide metabolism are potential therapeutic targets for AD, by targeting both neuroinflammation and neuroprotection.
RESUMO
Phospho-tau 217, phospho-tau 231 and phospho-tau 181 in cerebrospinal fluid and plasma are promising biomarkers for the diagnosis of Alzheimer's disease. All these p-tau proteins are detected in neurofibrillary tangles in brains obtained post-mortem from Alzheimer's disease patients. However, increases in p-tau levels in cerebrospinal fluid and plasma during the preclinical stage of Alzheimer's disease correlate with amyloid-ß burden and precede neurofibrillary tangles in brains, suggesting that these p-tau proteins are indicative of amyloid-ß-mediated brain pathology. In addition, phospho-tau 217 has greater sensitivity than phospho-tau 181, though it is unclear whether each of these p-tau variants contributes to the same or a different type of neuropathology prior to neurofibrillary tangle formation. In this study, we evaluated the intracerebral localization of p-tau in App knock-in mice with amyloid-ß plaques without neurofibrillary tangle pathology (AppNLGF ), in App knock-in mice with increased amyloid-ß levels without amyloid-ß plaques (AppNL ) and in wild-type mice. Immunohistochemical analysis showed that phospho-tau 217 and phospho-tau 231 were detected only in AppNLGF mice as punctate structures around amyloid-ß plaques, overlapping with the tau pathology marker, AT8 epitope phospho-tau 202/205/208. Moreover, phospho-tau 217 and phospho-tau 202/205/208 colocalized with the postsynaptic marker PSD95 and with a major tau kinase active, GSK3ß. In contrast and similar to total tau, phospho-tau 181 signals were readily detectable as fibre structures in wild-type and AppNL mice and colocalized with an axonal marker neurofilament light chain. In AppNLGF mice, these phospho-tau 181-positive structures were disrupted around amyloid-ß plaques and only partially overlapped with phospho-tau 217. These results indicate that phospho-tau 217, phospho-tau 231 and a part of phospho-tau 181 signals are markers of postsynaptic pathology around amyloid-ß plaques, with phospho-tau 181 also being a marker of axonal abnormality caused by amyloid-ß burden in brains.
RESUMO
BACKGROUND: The locus coeruleus (LC), a brainstem nucleus comprising noradrenergic neurons, is one of the earliest regions affected by Alzheimer's disease (AD). Amyloid-ß (Aß) pathology in the cortex in AD is thought to exacerbate the age-related loss of LC neurons, which may lead to cortical tau pathology. However, mechanisms underlying LC neurodegeneration remain elusive. OBJECTIVE: Here, we aimed to examine how noradrenergic neurons are affected by cortical Aß pathology in AppNL-G-F/NL-G-F knock-in mice. METHODS: The density of noradrenergic axons in LC-innervated regions and the LC neuron number were analyzed by an immunohistochemical method. To explore the potential mechanisms for LC degeneration, we also examined the occurrence of tau pathology in LC neurons, the association of reactive gliosis with LC neurons, and impaired trophic support in the brains of AppNL-G-F/NL-G-F mice. RESULTS: We observed a significant reduction in the density of noradrenergic axons from the LC in aged AppNL-G-F/NL-G-F mice without neuron loss or tau pathology, which was not limited to areas near Aß plaques. However, none of the factors known to be related to the maintenance of LC neurons (i.e., somatostatin/somatostatin receptor 2, brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) were significantly reduced in AppNL-G-F/NL-G-F mice. CONCLUSION: This study demonstrates that cortical Aß pathology induces noradrenergic neurodegeneration, and further elucidation of the underlying mechanisms will reveal effective therapeutics to halt AD progression.
Assuntos
Neurônios Adrenérgicos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Locus Cerúleo/patologia , Degeneração Neural/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos TransgênicosRESUMO
Brain neurons play a central role in organismal aging, but there is conflicting evidence about the role of neuronal glucose availability because glucose uptake and metabolism are associated with both aging and extended life span. Here, we analyzed metabolic changes in the brain neurons of Drosophila during aging. Using a genetically encoded fluorescent adenosine triphosphate (ATP) biosensor, we found decreased ATP concentration in the neuronal somata of aged flies, correlated with decreased glucose content, expression of glucose transporter and glycolytic enzymes and mitochondrial quality. The age-associated reduction in ATP concentration did not occur in brain neurons with suppressed glycolysis or enhanced glucose uptake, suggesting these pathways contribute to ATP reductions. Despite age-associated mitochondrial damage, increasing glucose uptake maintained ATP levels, suppressed locomotor deficits, and extended the life span. Increasing neuronal glucose uptake during dietary restriction resulted in the longest life spans, suggesting an additive effect of enhancing glucose availability during a bioenergetic challenge on aging.
RESUMO
BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia, is characterized by the progressive deposition of amyloid-ß (Aß) peptides and neurofibrillary tangles. Mouse models of Aß amyloidosis generated by knock-in (KI) of a humanized Aß sequence provide distinct advantages over traditional transgenic models that rely on overexpression of amyloid precursor protein (APP). In App-KI mice, three familial AD-associated mutations were introduced into the endogenous mouse App locus to recapitulate Aß pathology observed in AD: the Swedish (NL) mutation, which elevates total Aß production; the Beyreuther/Iberian (F) mutation, which increases the Aß42/Aß40 ratio; and the Arctic (G) mutation, which promotes Aß aggregation. AppNL-G-F mice harbor all three mutations and develop progressive Aß amyloidosis and neuroinflammatory response in broader brain areas, whereas AppNL mice carrying only the Swedish mutation exhibit no overt AD-related pathological changes. To identify behavioral alterations associated with Aß pathology, we assessed emotional and cognitive domains of AppNL-G-F and AppNL mice at different time points, using the elevated plus maze, contextual fear conditioning, and Barnes maze tasks. RESULTS: Assessments of emotional domains revealed that, in comparison with wild-type (WT) C57BL/6J mice, AppNL-G-F/NL-G-F mice exhibited anxiolytic-like behavior that was detectable from 6 months of age. By contrast, AppNL/NL mice exhibited anxiogenic-like behavior from 15 months of age. In the contextual fear conditioning task, both AppNL/NL and AppNL-G-F/NL-G-F mice exhibited intact learning and memory up to 15-18 months of age, whereas AppNL-G-F/NL-G-F mice exhibited hyper-reactivity to painful stimuli. In the Barnes maze task, AppNL-G-F/NL-G-F mice exhibited a subtle decline in spatial learning ability at 8 months of age, but retained normal memory functions. CONCLUSION: AppNL/NL and AppNL-G-F/NL-G-F mice exhibit behavioral changes associated with non-cognitive, emotional domains before the onset of definitive cognitive deficits. Our observations consistently indicate that AppNL-G-F/NL-G-F mice represent a model for preclinical AD. These mice are useful for the study of AD prevention rather than treatment after neurodegeneration.
Assuntos
Peptídeos beta-Amiloides/genética , Amiloidose/genética , Comportamento Animal/fisiologia , Emoções/fisiologia , Técnicas de Introdução de Genes , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Transtornos Cognitivos/genética , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
BACKGROUND: Cerebral amyloidosis, neuroinflammation, and tauopathy are key features of Alzheimer's disease (AD), but interactions among these features remain poorly understood. Our previous multiscale molecular network models of AD revealed TYROBP as a key driver of an immune- and microglia-specific network that was robustly associated with AD pathophysiology. Recent genetic studies of AD further identified pathogenic mutations in both TREM2 and TYROBP. METHODS: In this study, we systematically examined molecular and pathological interactions among Aß, tau, TREM2, and TYROBP by integrating signatures from transgenic Drosophila models of AD and transcriptome-wide gene co-expression networks from two human AD cohorts. RESULTS: Glial expression of TREM2/TYROBP exacerbated tau-mediated neurodegeneration and synergistically affected pathways underlying late-onset AD pathology, while neuronal Aß42 and glial TREM2/TYROBP synergistically altered expression of the genes in synaptic function and immune modules in AD. CONCLUSIONS: The comprehensive pathological and molecular data generated through this study strongly validate the causal role of TREM2/TYROBP in driving molecular networks in AD and AD-related phenotypes in flies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Degeneração Neural/genética , Degeneração Neural/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/genética , Sinapses/metabolismoRESUMO
The amyloid-beta 42 (Abeta42) peptide has been suggested to promote tau phosphorylation and toxicity in Alzheimer's disease (AD) pathogenesis; however, the underlying mechanisms are not fully understood. Using transgenic Drosophila expressing both human Abeta42 and tau, we show here that tau phosphorylation at Ser262 plays a critical role in Abeta42-induced tau toxicity. Co-expression of Abeta42 increased tau phosphorylation at AD-related sites including Ser262, and enhanced tau-induced neurodegeneration. In contrast, formation of either sarkosyl-insoluble tau or paired helical filaments was not induced by Abeta42. Co-expression of Abeta42 and tau carrying the non-phosphorylatable Ser262Ala mutation did not cause neurodegeneration, suggesting that the Ser262 phosphorylation site is required for the pathogenic interaction between Abeta42 and tau. We have recently reported that the DNA damage-activated Checkpoint kinase 2 (Chk2) phosphorylates tau at Ser262 and enhances tau toxicity in a transgenic Drosophila model. We detected that expression of Chk2, as well as a number of genes involved in DNA repair pathways, was increased in the Abeta42 fly brains. The induction of a DNA repair response is protective against Abeta42 toxicity, since blocking the function of the tumor suppressor p53, a key transcription factor for the induction of DNA repair genes, in neurons exacerbated Abeta42-induced neuronal dysfunction. Our results demonstrate that tau phosphorylation at Ser262 is crucial for Abeta42-induced tau toxicity in vivo, and suggest a new model of AD progression in which activation of DNA repair pathways is protective against Abeta42 toxicity but may trigger tau phosphorylation and toxicity in AD pathogenesis.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Fragmentos de Peptídeos/toxicidade , Fosfosserina/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Quinase do Ponto de Checagem 2 , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Modelos Animais de Doenças , Olho/efeitos dos fármacos , Olho/patologia , Humanos , Atividade Motora/efeitos dos fármacos , Degeneração Neural/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Envelhecimento/patologia , Animais , Axônios/metabolismo , Comportamento Animal , Encéfalo/patologia , Encéfalo/ultraestrutura , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Locomoção , Mitocôndrias/ultraestrutura , Neurônios/enzimologia , Fosfoproteínas/metabolismo , Transporte Proteico , Especificidade por SubstratoRESUMO
Alzheimer's disease (AD) is the most common form of senile dementia, and a cure is desperately needed. The amyloid-beta42 (Abeta42) has been suggested to play a central role in the pathogenesis of AD. However, the mechanism by which Abeta42 causes AD remains unclear. To understand the pathogenesis and to develop therapeutic avenues, it is crucial to generate animal models of AD in genetically tractable organisms. Drosophila is a well-established model system for which abundant genetic tools are available. Moreover, its well organized brain permits the study of complex behaviors such as learning and memory. We have established transgenic flies that express human Abeta42 in the nervous system. These flies developed age-dependent short-term memory impairment and neurodegeneration. In this review, we will first describe transgenic Abeta42 fly models and discuss the unique features of this system compared to mouse AD models. Secondly, we will discuss the usage of the fly models to evaluate currently proposed therapeutic strategies. Thirdly, we will briefly review the results of a genetic screen for modifiers of Abeta42 toxicity in the fly model. Finally, we will discuss how to dissect the complex mechanisms of Abeta42 toxicity focusing on its aggregation propensity using the fly model system.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Amiloidose/genética , Drosophila/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/toxicidade , Amiloidose/patologia , Animais , Doenças Neurodegenerativas/genéticaRESUMO
The amyloid-beta42 (Abeta42) peptide has been suggested to play a causative role in Alzheimer disease (AD). Neprilysin (NEP) is one of the rate-limiting Abeta-degrading enzymes, and its enhancement ameliorates extracellular amyloid pathology, synaptic dysfunction, and memory defects in mouse models of Abeta amyloidosis. In addition to the extracellular Abeta, intraneuronal Abeta42 may contribute to AD pathogenesis. However, the protective effects of neuronal NEP expression on intraneuronal Abeta42 accumulation and neurodegeneration remain elusive. In contrast, sustained NEP activation may be detrimental because NEP can degrade many physiological peptides, but its consequences in the brain are not fully understood. Using transgenic Drosophila expressing human NEP and Abeta42, we demonstrated that NEP efficiently suppressed the formation of intraneuronal Abeta42 deposits and Abeta42-induced neuron loss. However, neuronal NEP overexpression reduced cAMP-responsive element-binding protein-mediated transcription, caused age-dependent axon degeneration, and shortened the life span of the flies. Interestingly, the mRNA levels of endogenous fly NEP genes and phosphoramidon-sensitive NEP activity declined during aging in fly brains, as observed in mammals. Taken together, these data suggest both the protective and detrimental effects of chronically high NEP activity in the brain. Down-regulation of NEP activity in aging brains may be an evolutionarily conserved phenomenon, which could predispose humans to developing late-onset AD.
Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Axônios/enzimologia , Regulação da Expressão Gênica , Neprilisina/biossíntese , Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Amiloidose/enzimologia , Amiloidose/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Ativação Enzimática/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Neprilisina/genéticaRESUMO
Gene-specific expansion of polyglutamine-encoding CAG repeats can cause neurodegenerative disorders, including Huntington's disease. It is believed that part of the pathological effect of the expanded protein is due to transcriptional dysregulation. Using Drosophila as a model, we show that cAMP-response element-binding protein (CREB) is involved in expanded polyglutamine-induced toxicity. A mutation in the Drosophila homolog of CREB, dCREB2, enhances lethality due to polyglutamine peptides (polyQ), and an additional copy of dCREB2 partially rescues this lethality. Neuronal expression of expanded polyQ attenuates in vivo CRE-mediated transcription of a reporter gene. As reported previously, overexpression of heat-shock protein 70 (Hsp70) rescues polyglutamine-dependent lethality. However, it does not rescue CREB-mediated transcription. The protective effects of CREB and heat-shock protein 70 against polyQ are additive, suggesting that targeting multiple pathways may be effective for treatment of polyglutamine diseases.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/metabolismo , Doenças do Sistema Nervoso/genética , Peptídeos/metabolismo , Transativadores/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Drosophila , Luciferases , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Peptídeos/genética , Análise de SobrevidaRESUMO
We have isolated a novel protein based on its association with Drosophila APP-like protein (APPL), a homolog of the beta-amyloid precursor protein (APP) that is implicated in Alzheimer's disease. This novel APPL-interacting protein 1 (APLIP1) contains a Src homology 3 domain and a phosphotyrosine interaction domain and is expressed abundantly in neural tissues. The phosphotyrosine interaction domain of APLIP1 interacts with a sequence containing GYENPTY in the cytoplasmic domain of APPL. APLIP1 is highly homologous to the carboxyl-terminal halves of mammalian c-Jun NH(2)-terminal kinase (JNK)-interacting protein 1b (JIP1b) and 2 (JIP2), which also contain Src homology 3 and phosphotyrosine interaction domains. The similarity of APLIP1 to JIP1b and JIP2 includes interaction with component(s) of the JNK signaling pathway and with the motor protein kinesin and the formation of homo-oligomers. JIP1b interacts strongly with the cytoplasmic domain of APP (APPcyt), as APLIP1 does with APPL, but the interaction of JIP2 with APPcyt is weak. Overexpression of JIP1b slightly enhances the JNK-dependent threonine phosphorylation of APP in cultured cells, but that of JIP2 suppresses it. These observations suggest that the interactions of APP family proteins with APLIP1, JIP1b, and JIP2 are conserved and play important roles in the metabolism and/or the function of APPs including the regulation of APP phosphorylation by JNK. Analysis of APP family proteins and their associated proteins is expected to contribute to understanding the molecular process of neural degeneration in Alzheimer's disease.