Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Am J Respir Cell Mol Biol ; 63(1): 67-78, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101459

RESUMO

Epithelial dysfunction in the small airways may cause the development of emphysema in chronic obstructive pulmonary disease. C/EBPα (CCAAT/enhancer binding protein-α), a transcription factor, is required for lung maturation during development, and is also important for lung homeostasis after birth, including the maintenance of serine protease/antiprotease balance in the bronchiolar epithelium. This study aimed to show the roles of C/EBPα in the distal airway during chronic cigarette smoke exposure in mice and in the small airways in smokers. In a model of chronic smoke exposure using epithelial cell-specific C/EBPα-knockout mice, significant pathological phenotypes, such as higher protease activity, impaired ciliated cell regeneration, epithelial cell barrier dysfunction via reduced zonula occludens-1 (Zo-1), and decreased alveolar attachments, were found in C/EBPα-knockout mice compared with control mice. We found that Spink5 (serine protease inhibitor kazal-type 5) gene (encoding lymphoepithelial Kazal-type-related inhibitor [LEKTI], an anti-serine protease) expression in the small airways is a key regulator of protease activity in this model. Finally, we showed that daily antiprotease treatment counteracted the phenotypes of C/EBPα-knockout mice. In human studies, CEBPA (CCAAT/enhancer binding protein-α) gene expression in the lung was downregulated in patients with emphysema, and six smokers with centrilobular emphysema (CLE) showed a significant reduction in LEKTI in the small airways compared with 22 smokers without CLE. LEKTI downregulation in the small airways was associated with disease development during murine small airway injury and CLE in humans, suggesting that LEKTI might be a key factor linking small airway injury to the development of emphysema.


Assuntos
Pulmão/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Serina Proteases/metabolismo , Animais , Bronquíolos/metabolismo , Bronquíolos/patologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Fumar/metabolismo
2.
PLoS One ; 9(5): e91376, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806461

RESUMO

Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (Scap(Δ/Δ), resulting in inactivation of SREBP signaling) or Insig1 and Insig2 (Insig1/2(Δ/Δ), resulting in activation of SREBP signaling) was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/ß-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.


Assuntos
Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/citologia , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 306(8): L726-35, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508732

RESUMO

A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-ß (TGF-ß) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-ß induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-ß pathway in the lung is unknown. The αvß6 integrin is an important in vivo activator of TGF-ß activation in the lung. Immunohistochemical analysis of αvß6 protein expression and bronchoalveolar analysis of TGF-ß pathway signaling indicates activation of the αvß6/TGF-ß pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvß6/TGF-ß pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvß6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvß6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the ß6 integrin, TGF-α transgenic mice were mated with ß6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of the ß6 integrin attenuated histological and physiological changes in the lungs of TGF-α transgenic mice although a significant degree of fibrosis still developed. In summary, inhibition of the ß6 integrin led to a modest, albeit significant, effect on pleural thickening and lung function decline observed with TGF-α-induced pulmonary fibrosis. These data support activation of the αvß6/TGF-ß pathway as a secondary effect contributing to TGF-α-induced pleural fibrosis and suggest a complex contribution of multiple mediators to the maintenance of progressive fibrosis in the lung.


Assuntos
Integrinas/antagonistas & inibidores , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador alfa/farmacologia , Animais , Antibacterianos/toxicidade , Anticorpos Neutralizantes , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Lavagem Broncoalveolar , Colágeno , Doxiciclina/toxicidade , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Técnicas Imunoenzimáticas , Integrinas/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Uteroglobina/fisiologia
4.
Am J Respir Cell Mol Biol ; 50(4): 777-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24199692

RESUMO

Pulmonary fibrosis is caused by excessive proliferation and accumulation of stromal cells. Fibrocytes are bone marrow (BM)-derived cells that contribute to pathologic stromal cell accumulation in human lung disease. However, the cellular source for these stromal cells and the degree of fibrocyte contribution to pulmonary fibrosis remain unclear. To determine the etiology of stromal cell excess during pulmonary fibrosis, we measured fibrocytes during the progression of fibrosis in the transforming growth factor (TGF)-α transgenic mouse model. Lung epithelial-specific overexpression of TGF-α led to progressive pulmonary fibrosis associated with increased accumulation of fibrocytes in the fibrotic lesions. Although reconstitution of BM cells into TGF-α mice demonstrated accumulation of these cells in fibrotic lesions, the majority of the cells did not express α-smooth muscle actin, suggesting that fibrocytes did not transform into myofibroblasts. To explore the mechanisms of fibrocytes in pulmonary fibrogenesis, adoptive cell-transfer experiments were performed. Purified fibrocytes were transferred intravenously into TGF-α transgenic mice, and fibrosis endpoints were compared with controls. Analysis of lung histology and hydroxyproline levels demonstrated that fibrocyte transfers augment TGF-α-induced lung fibrosis. A major subset of TGF-α-induced fibrocytes expressed CD44 and displayed excessive invasiveness, which is attenuated in the presence of anti-CD44 antibodies. Coculture experiments of resident fibroblasts with fibrocytes demonstrated that fibrocytes stimulate proliferation of resident fibroblasts. In summary, fibrocytes are increased in the progressive, fibrotic lesions of TGF-α-transgenic mice and activate resident fibroblasts to cause severe lung disease.


Assuntos
Células da Medula Óssea/metabolismo , Movimento Celular , Proliferação de Células , Fibroblastos/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Transferência Adotiva , Animais , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Fibroblastos/patologia , Fibroblastos/transplante , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Receptores de Hialuronatos/metabolismo , Hidroxiprolina/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Células Estromais/patologia , Células Estromais/transplante , Fatores de Tempo , Fator de Crescimento Transformador alfa/genética , Regulação para Cima
5.
Am J Respir Cell Mol Biol ; 49(3): 348-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23590306

RESUMO

Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Macrófagos/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Receptores Acoplados a Proteínas G/genética , Mucosa Respiratória/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Células Epiteliais/patologia , Éxons , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosfatidilcolinas/biossíntese , Alvéolos Pulmonares/patologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
6.
PLoS One ; 8(2): e57013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437297

RESUMO

The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) is a basic leucine zipper transcription factor and is expressed in alveolar type II cells, alveolar macrophages and Clara cells in the lung. Although decrease or absence of C/EBPα expression in human non-small cell lung cancer suggests a possible role of C/EBPα as a lung tumor suppressor, there is no direct proof for this hypothesis. In this study, we investigated, for the first time, the role of C/EBPα in lung tumors in vivo using transgenic mice with lung epithelial specific conditional deletion of Cebpa (Cebpα(Δ/Δ) mice) and a urethane-induced lung tumor model. C/EBPα expression in the lung was dispensable, and its deletion was not oncogenic under unstressed conditions. However, at 28 wk after urethane injection, the number and size of tumors and the tumor burden were significantly higher in Cebpα(Δ/Δ) mice than in littermate control mice. Urethane-injected Cebpα(Δ/Δ) mice showed highly proliferative adenomas and adenocarcinomas in the lung, and survival time after urethane-injection was significantly shorter than that in control mice. In control mice, C/EBPα was strongly induced in the tumor tissues at 28 weeks after urethane-injection, but became weakened or absent as tumors progressed after long-term observation for over 1 year. Using intraperitoneal injection of p38 inhibitor (SB203580), we demonstrated that the induction of C/EBPα is strongly regulated by the p38 MAP kinase in murine alveolar epithelial cells. A high correlation was demonstrated between the expression of C/EBPα and p38α MAP kinase in tumor cells, suggesting that C/EBPα silencing in tumor cells is caused by down-regulation of p38α MAP kinase. In conclusion, the role of C/EBPα as a lung tumor suppressor was demonstrated for the first time in the present study, and the extinguished C/EBPα expression through p38α inactivation leads tumor promotion and progression.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Morte Celular , Proliferação de Células , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Homozigoto , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Regiões Promotoras Genéticas , Uretana/efeitos adversos
7.
Dev Biol ; 370(2): 198-212, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22885335

RESUMO

Respiratory epithelial cells are derived from cell progenitors in the foregut endoderm that subsequently differentiate into the distinct cell types lining the conducting and alveolar regions of the lung. To identify transcriptional mechanisms regulating differentiation and maintenance of respiratory epithelial cells, we conditionally deleted Foxm1 transcription factor from the conducting airways of the developing mouse lung. Conditional deletion of Foxm1 from Clara cells, controlled by the Scgb1a1 promoter, dramatically altered airway structure and caused peribronchial fibrosis, resulting in airway hyperreactivity in adult mice. Deletion of Foxm1 inhibited proliferation of Clara cells and disrupted the normal patterning of epithelial cell differentiation in the bronchioles, causing squamous and goblet cell metaplasia, and the loss of Clara and ciliated cells. Surprisingly, conducting airways of Foxm1-deficient mice contained highly differentiated cuboidal type II epithelial cells that are normally restricted to the alveoli. Lineage tracing studies showed that the ectopic alveolar type II cells in Foxm1-deficient airways were derived from Clara cells. Deletion of Foxm1 inhibited Sox2 and Scgb1a1, both of which are critical for differentiation and function of Clara cells. In co-transfection experiments, Foxm1 directly bound to and induced transcriptional activity of Scgb1a1 and Sox2 promoters. Foxm1 is required for differentiation and maintenance of epithelial cells lining conducting airways.


Assuntos
Diferenciação Celular , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/crescimento & desenvolvimento , Animais , Células Epiteliais/citologia , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Camundongos , Alvéolos Pulmonares/citologia , Fatores de Transcrição SOXB1/metabolismo , Transcriptoma , Uteroglobina/metabolismo
8.
PLoS One ; 7(8): e37046, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916088

RESUMO

The timing of lung maturation is controlled precisely by complex genetic and cellular programs. Lung immaturity following preterm birth frequently results in Respiratory Distress Syndrome (RDS) and Broncho-Pulmonary Dysplasia (BPD), which are leading causes of mortality and morbidity in preterm infants. Mechanisms synchronizing gestational length and lung maturation remain to be elucidated. In this study, we designed a genome-wide mRNA expression time-course study from E15.5 to Postnatal Day 0 (PN0) using lung RNAs from C57BL/6J (B6) and A/J mice that differ in gestational length by ∼30 hr (B6

Assuntos
Pulmão/crescimento & desenvolvimento , Transcrição Gênica , Animais , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
9.
PLoS One ; 7(7): e39392, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808033

RESUMO

Although superiority of synthetic surfactant over animal-driven surfactant has been known, there is no synthetic surfactant commercially available at present. Many trials have been made to develop synthetic surfactant comparable in function to animal-driven surfactant. The efficacy of treatment with a new synthetic surfactant (CHF5633) containing dipalmitoylphosphatidylcholine, phosphatidylglycerol, SP-B analog, and SP-C analog was evaluated using immature newborn lamb model and compared with animal lung tissue-based surfactant Survanta. Lambs were treated with a clinical dose of 200 mg/kg CHF5633, 100 mg/kg Survanta, or air after 15 min initial ventilation. All the lambs treated with air died of respiratory distress within 90 min of age. During a 5 h study period, Pco(2) was maintained at 55 mmHg with 24 cmH(2)O peak inspiratory pressure for both groups. The preterm newborn lamb lung functions were dramatically improved by CHF5633 treatment. Slight, but significant superiority of CHF5633 over Survanta was demonstrated in tidal volume at 20 min and dynamic lung compliance at 20 and 300 min. The ultrastructure of CHF5633 was large with uniquely aggregated lipid particles. Increased uptake of CHF5633 by alveolar monocytes for catabolism was demonstrated by microphotograph, which might be associated with the higher treatment dose of CHF5633. The higher catabolism of CHF5633 was also suggested by the similar amount of surfactant lipid in bronchoalveolar lavage fluid (BALF) between CHF5633 and Survanta groups, despite the 2-fold higher treatment dose of CHF5633. Under the present ventilation protocol, lung inflammation was minimal for both groups, evaluated by inflammatory cell numbers in BALF and expression of IL-1ß, IL-6, IL-8, and TNFα mRNA in the lung tissue. In conclusion, the new synthetic surfactant CHF5633 was effective in treating extremely immature newborn lambs with surfactant deficiency during the 5 h study period.


Assuntos
Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilcolinas/síntese química , Fosfatidilcolinas/uso terapêutico , Nascimento Prematuro/tratamento farmacológico , Proteína B Associada a Surfactante Pulmonar/síntese química , Proteína B Associada a Surfactante Pulmonar/uso terapêutico , Proteína C Associada a Surfactante Pulmonar/síntese química , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/síntese química , Surfactantes Pulmonares/uso terapêutico , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/química , Citocinas/biossíntese , Citocinas/imunologia , Esquema de Medicação , Humanos , Recém-Nascido , Pulmão/imunologia , Complacência Pulmonar/efeitos dos fármacos , Fosfatidilgliceróis/química , Nascimento Prematuro/imunologia , Proteolipídeos/química , Respiração Artificial , Carneiro Doméstico , Volume de Ventilação Pulmonar/efeitos dos fármacos
10.
J Biol Chem ; 287(13): 10099-10114, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22267724

RESUMO

Pulmonary inflammation is associated with altered lipid synthesis and clearance related to diabetes, obesity, and various inherited metabolic disorders. In many tissues, lipogenesis is regulated at the transcriptional level by the activity of sterol-response element-binding proteins (SREBP). The role of SREBP activation in the regulation of lipid metabolism in the lung was assessed in mice in which both Insig1 and Insig2 genes, encoding proteins that bind and inhibit SREBPs in the endoplasmic reticulum, were deleted in alveolar type 2 cells. Although deletion of either Insig1 or Insig2 did not alter SREBP activity or lipid homeostasis, deletion of both genes (Insig1/2(Δ/Δ) mice) activated SREBP1, causing marked accumulation of lipids that consisted primarily of cholesterol esters and triglycerides in type 2 epithelial cells and alveolar macrophages. Neutral lipids accumulated in type 2 cells in association with the increase in mRNAs regulating fatty acid, cholesterol synthesis, and inflammation. Although bronchoalveolar lavage fluid phosphatidylcholine was modestly decreased, lung phospholipid content and lung function were maintained. Insig1/2(Δ/Δ) mice developed lung inflammation and airspace abnormalities associated with the accumulation of lipids in alveolar type 2 cells, alveolar macrophages, and within alveolar spaces. Deletion of Insig1/2 activated SREBP-enhancing lipogenesis in respiratory epithelial cells resulting in lipotoxicity-related lung inflammation and tissue remodeling.


Assuntos
Lipogênese , Proteínas de Membrana/metabolismo , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
11.
Am J Respir Cell Mol Biol ; 46(3): 380-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021337

RESUMO

Pulmonary fibrosis remains a significant public health burden with no proven therapies. The mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade is a major pathway controlling cellular processes associated with fibrogenesis, including growth, proliferation, and survival. Activation of the MAPK/ERK pathway is detected in the lungs of human fibrosis samples; however, the effect of modulating the pathway in vivo is unknown. Overexpression of transforming growth factor (TGF)-α in the lung epithelium of transgenic mice causes a progressive pulmonary fibrosis associated with increased MEK/ERK activation localized primarily in mesenchymal cells. To determine the role of the MEK pathway in the induction of TGF-α-induced lung fibrosis, TGF-α was overexpressed for 4 weeks while mice were simultaneously treated with the specific MEK inhibitor, ARRY-142886 (ARRY). Treatment with ARRY prevented increases in lung cell proliferation and total lung collagen, attenuated production of extracellular matrix genes, and protected mice from changes in lung function. ARRY administered as a rescue treatment after fibrosis was already established inhibited fibrosis progression, as assessed by lung histology, changes in body weights, extracellular matrix gene expression, and lung mechanics. These findings demonstrate that MEK inhibition prevents progression of established fibrosis in the TGF-α model, and provides proof of concept of targeting the MEK pathway in fibrotic lung disease.


Assuntos
Benzimidazóis/farmacologia , Receptores ErbB/metabolismo , Pulmão/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Regulação da Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/fisiopatologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 302(4): L380-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160306

RESUMO

The proinflammatory stimulus of chorioamnionitis is commonly associated with preterm delivery. Women at risk of preterm delivery receive antenatal glucocorticoids to functionally mature the fetal lung. However, the effects of the combined exposures of chorioamnionitis and antenatal glucocorticoids on the fetus are poorly understood. Time-mated ewes with singleton fetuses received an intra-amniotic injection of lipopolysaccharide (LPS) either preceding or following maternal intramuscular betamethasone 7 or 14 days before delivery, and the fetuses were delivered at 120 days gestational age (GA) (term = 150 days GA). Gestation matched controls received intra-amniotic and maternal intramuscular saline. Compared with saline controls, intra-amniotic LPS increased inflammatory cells in the bronchoalveolar lavage and myeloperoxidase, Toll-like receptor 2 and 4 mRNA, PU.1, CD3, and Foxp3-positive cells in the fetal lung. LPS-induced lung maturation measured as increased airway surfactant and improved lung gas volumes. Intra-amniotic LPS-induced inflammation persisted until 14 days after exposure. Betamethasone treatment alone induced modest lung maturation but, when administered before intra-amniotic LPS, suppressed lung inflammation. Interestingly, betamethasone treatment after LPS did not counteract inflammation but enhanced lung maturation. We conclude that the order of exposures of intra-amniotic LPS or maternal betamethasone had large effects on fetal lung inflammation and maturation.


Assuntos
Betametasona/uso terapêutico , Corioamnionite/tratamento farmacológico , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Pulmão/embriologia , Âmnio , Animais , Líquido da Lavagem Broncoalveolar/citologia , Corioamnionite/etiologia , Corioamnionite/imunologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Maturidade dos Órgãos Fetais/imunologia , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/imunologia , Masculino , Acetato de Medroxiprogesterona/uso terapêutico , Peroxidase/metabolismo , Fosfatidilcolinas/metabolismo , Gravidez , Nascimento Prematuro/imunologia , Nascimento Prematuro/prevenção & controle , Proteína C Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Distribuição Aleatória , Ovinos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
13.
Dev Biol ; 362(1): 24-41, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094019

RESUMO

Hypoxia inducible factor (HIF) 1a, EPAS1 and NEPAS are expressed in the embryonic mouse lung and each isoform exhibits distinct spatiotemporal expression patterns throughout morphogenesis. To further assess the role of the HIF1a isoform in lung epithelial cell differentiation and homeostasis, we created transgenic mice that express a constitutively active isoform of human HIF-1a (HIF-1a three point mutant (TPM)), in a doxycycline-dependent manner. Expression of HIF1a TPM in the developing pulmonary epithelium resulted in lung hypoplasia characterized by defective branching morphogenesis, altered cellular energetics and impaired epithelial maturation, culminating in neonatal lethality at birth from severe respiratory distress. Histological and biochemical analyses revealed expanded glycogen pools in the pulmonary epithelial cells at E18.5, concomitant with decreased pulmonary surfactant, suggesting a delay or an arrest in maturation. Importantly, these defects occurred in the absence of apoptosis or necrosis. In addition, sub-pleural hemorrhaging was evident as early as E14.5 in HIF1a TPM lungs, despite normal patterning of the blood vasculature, consistent with defects in endothelial barrier function. Epithelial expression of HIF1a TPM also resulted in increased VEGFA and VEGFC production, an increase in the number of lymphatic vessels and indirect activation of the multiple Notch pathway components in endothelial precursor cells. Collectively, these data indicate that HIF-1a protein levels in the pulmonary epithelium must be tightly controlled for proper development of the epithelial and mesenchymal compartments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/embriologia , Linfangiogênese/fisiologia , Mucosa Respiratória/embriologia , Análise de Variância , Animais , Primers do DNA/genética , DNA Mitocondrial/genética , Doxiciclina , Vetores Genéticos/genética , Glicogênio/metabolismo , Soros Imunes/genética , Immunoblotting , Imuno-Histoquímica , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Fosfatidilcolinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo , Transgenes/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo
14.
Respir Res ; 11: 151, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21034485

RESUMO

BACKGROUND: Increased pro-inflammatory cytokines in tracheal aspirates correlate with the development of BPD in preterm infants. Ventilation of preterm lambs increases pro-inflammatory cytokines and causes lung inflammation. OBJECTIVE: We tested the hypothesis that selective inhibitors of pro-inflammatory signaling would decrease lung inflammation induced by ventilation in preterm newborn lambs. We also examined if the variability in injury response was explained by variations in the endogenous surfactant pool size. METHODS: Date-mated preterm lambs (n = 28) were operatively delivered and mechanically ventilated to cause lung injury (tidal volume escalation to 15 mL/kg by 15 min at age). The lambs then were ventilated with 8 mL/kg tidal volume for 1 h 45 min. Groups of animals randomly received specific inhibitors for IL-8, IL-1, or NF-κB. Unventilated lambs (n = 7) were the controls. Bronchoalveolar lavage fluid (BALF) and lung samples were used to quantify inflammation. Saturated phosphatidylcholine (Sat PC) was measured in BALF fluid and the data were stratified based on a level of 5 µmol/kg (~8 mg/kg surfactant). RESULTS: The inhibitors did not decrease the cytokine levels or inflammatory response. The inflammation increased as Sat PC pool size in BALF decreased. Ventilated lambs with a Sat PC level > 5 µmol/kg had significantly decreased markers of injury and lung inflammation compared with those lambs with < 5 µmol/kg. CONCLUSION: Lung injury caused by high tidal volumes at birth were decreased when endogenous surfactant pool sizes were larger. Attempts to decrease inflammation by blocking IL-8, IL-1 or NF-κB were unsuccessful.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Surfactantes Pulmonares/antagonistas & inibidores , Respiração Artificial/efeitos adversos , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Lesão Pulmonar/etiologia , Ácidos Nicotínicos/farmacologia , Gravidez , Surfactantes Pulmonares/metabolismo , Distribuição Aleatória , Ovinos
15.
Am J Respir Crit Care Med ; 182(1): 49-61, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20224064

RESUMO

RATIONALE: Granulocyte/macrophage colony-stimulating factor (GM-CSF) autoantibodies (GMAb) are strongly associated with idiopathic pulmonary alveolar proteinosis (PAP) and are believed to be important in its pathogenesis. However, levels of GMAb do not correlate with disease severity and GMAb are also present at low levels in healthy individuals. OBJECTIVES: Our primary objective was to determine whether human GMAb would reproduce PAP in healthy primates. A secondary objective was to determine the concentration of GMAb resulting in loss of GM-CSF signaling in vivo (i.e., critical threshold). METHODS: Nonhuman primates (Macaca fascicularis) were injected with highly purified, PAP patient-derived GMAb in dose-ranging (2.2-50 mg) single and multiple administration studies, and after blocking antihuman immunoglobulin immune responses, in chronic administration studies maintaining serum levels greater than 40 microg/ml for up to 11 months. MEASUREMENTS AND MAIN RESULTS: GMAb blocked GM-CSF signaling causing (1) a milky-appearing bronchoalveolar lavage fluid containing increased surfactant lipids and proteins; (2) enlarged, foamy, surfactant-filled alveolar macrophages with reduced PU.1 and PPARgamma mRNA, and reduced tumor necrosis factor-alpha secretion; (3) pulmonary leukocytosis; (4) increased serum surfactant protein-D; and (5) impaired neutrophil functions. GM-CSF signaling varied inversely with GMAb concentration below a critical threshold of 5 microg/ml, which was similar in lungs and blood and to the value observed in patients with PAP. CONCLUSIONS: GMAb reproduced the molecular, cellular, and histopathologic features of PAP in healthy primates, demonstrating that GMAb directly cause PAP. These results have implications for therapy of PAP and help define the therapeutic window for potential use of GMAb to treat other disorders.


Assuntos
Autoanticorpos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Proteinose Alveolar Pulmonar/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Macrófagos Alveolares/diagnóstico por imagem , Proteinose Alveolar Pulmonar/patologia , Ultrassonografia
16.
Am J Pathol ; 176(2): 679-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20042669

RESUMO

Transforming growth factor-alpha (TGFalpha) is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. EGFR signaling activates several intracellular signaling pathways including phosphatidylinositol 3'-kinase (PI3K). We previously showed that induction of lung-specific TGFalpha expression in transgenic mice caused progressive pulmonary fibrosis over a 4-week period. The increase in levels of phosphorylated Akt, detected after 1 day of doxycycline-induced TGFalpha expression, was blocked by treatment with the PI3K inhibitor, PX-866. Daily administration of PX-866 during TGFalpha induction prevented increases in lung collagen and airway resistance as well as decreases in lung compliance. Treatment of mice with oral PX-866 4 weeks after the induction of TGFalpha prevented additional weight loss and further increases in total collagen, and attenuated changes in pulmonary mechanics. These data show that PI3K is activated in TGFalpha/EGFR-mediated pulmonary fibrosis and support further studies to determine the role of PI3K activation in human lung fibrotic disease, which could be amenable to targeted therapy.


Assuntos
Gonanos/farmacologia , Gonanos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/prevenção & controle , Fator de Crescimento Transformador alfa , Administração Oral , Animais , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Gonanos/administração & dosagem , Camundongos , Camundongos Transgênicos , Proteína Oncogênica v-akt/metabolismo , Fosforilação/efeitos dos fármacos , Uteroglobina/genética
17.
Am J Respir Cell Mol Biol ; 41(5): 562-72, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19244201

RESUMO

Transforming growth factor (TGF)-alpha is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-alpha in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-alpha. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-alpha prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fibrose Pulmonar/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Fator de Crescimento Transformador alfa/metabolismo , Animais , Proteínas de Transporte/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Doxiciclina/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib , Regulação da Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/fisiopatologia , Quinazolinas/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR , Fatores de Tempo , Fator de Crescimento Transformador alfa/genética , Uteroglobina/genética
18.
Pediatr Res ; 64(5): 517-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18596572

RESUMO

Positive end-expiratory pressure (PEEP) protects the lung from injury during sustained ventilation, but its role in protecting the lung from injury during the initiation of ventilation in the delivery room is not established. We aimed to evaluate whether PEEP and/or tidal volume (VT) within the first 15-min of ventilation are protective against lung injury. Operatively delivered preterm lambs (133 +/- 1 d gestation) were randomly assigned to unventilated controls or to one of four 15 min ventilation interventions: 1) VT15 mL/kg, PEEP 0 cm H2O; 2) VT15 mL/kg, PEEP 5 cm H2O; 3) VT8 mL/kg, PEEP 0 cm H2O; and 4) VT8 mL/kg, PEEP 5 cm H2O. Each group was subsequently ventilated with VT 10 mL/kg, PEEP 5 cm H2O for 1 h 45 min. Lung function was assessed and measurements of lung injury were evaluated postmortem. After the 15 min ventilation maneuver, the VT15 groups were hypocarbic, had higher oxygenation, and required lower pressures than the VT8 groups; no consistent effect of PEEP was found. Markers of lung injury were significantly elevated in all ventilation groups compared with unventilated controls; no effect of PEEP was found. Ventilation resulted in localization of IL-6 to the small airways. Initial ventilation of preterm lambs with PEEP and/or VT of 8 mL/kg did not prevent an inflammatory injury to the lung.


Assuntos
Lesão Pulmonar/prevenção & controle , Pulmão/fisiopatologia , Respiração com Pressão Positiva , Nascimento Prematuro , Ventilação Pulmonar , Volume de Ventilação Pulmonar , Animais , Feminino , Idade Gestacional , Pulmão/patologia , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Gravidez , Ovinos , Fatores de Tempo
19.
Development ; 135(15): 2563-72, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18599506

RESUMO

The transition to air breathing after birth requires both anatomic and biochemical maturation of the lung. Lung morphogenesis is mediated by complex paracrine interactions between respiratory epithelial cells and mesenchymal cells that direct transcriptional programs guiding patterning and cytodifferentiation of the lung. In the present study, transgenic mice were generated in which the Kruppel-like factor 5 gene (Klf5) was conditionally deleted in respiratory epithelial cells in the fetal lung. Lack of KLF5 inhibited maturation of the lung during the saccular stage of development. Klf5(Delta/Delta) mice died of respiratory distress immediately after birth. Abnormalities in lung maturation and morphogenesis were observed in the respiratory epithelium, the bronchiolar smooth muscle, and the pulmonary vasculature. Respiratory epithelial cells of both the conducting and peripheral airways were immature. Surfactant phospholipids were decreased and lamellar bodies, the storage form of surfactant, were rarely found. mRNA microarray analysis demonstrated that KLF5 influenced the expression of genes regulating surfactant lipid and protein homeostasis, vasculogenesis, including Vegfa, and smooth muscle cell differentiation. KLF5 regulates genes controlling paracrine interactions during lung morphogenesis, as well as those regulating the maturation of the respiratory epithelium that is required for lung function after birth.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Genoma/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Metabolismo dos Lipídeos , Pulmão/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Fator de Crescimento Transformador beta1/farmacologia
20.
Pediatrics ; 121(5): 945-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18450898

RESUMO

OBJECTIVE: The goal was to study the pulmonary, biochemical, and morphologic effects of a persistent patent ductus arteriosus in a preterm baboon model of bronchopulmonary dysplasia. METHODS: Preterm baboons (treated prenatally with glucocorticoids) were delivered at 125 days of gestation (term: 185 days), given surfactant, and ventilated for 14 days. Twenty-four hours after birth, newborns were randomly assigned to receive either ibuprofen (to close the patent ductus arteriosus; n = 8) or no drug (control; n = 13). RESULTS: After treatment was started, the ibuprofen group had significantly lower pulmonary/systemic flow ratio, higher systemic blood pressure, and lower left ventricular end diastolic diameter, compared with the control group. There were no differences in cardiac performance indices between the groups. Ventilation index and dynamic compliance were significantly improved with ibuprofen. The improved pulmonary mechanics in ibuprofen-treated newborns were not attributable to changes in levels of surfactant protein B, C, or D, saturated phosphatidylcholine, or surfactant inhibitory proteins. There were no differences in tracheal concentrations of cytokines commonly associated with the development of bronchopulmonary dysplasia. The groups had similar messenger RNA expression of genes that regulate inflammation and remodeling in the lung. Lungs from ibuprofen-treated newborns were significantly drier (lower wet/dry ratio) and expressed 2.5 times more epithelial sodium channel protein than did control lungs. By 14 days after delivery, control newborns had morphologic features of arrested alveolar development (decreased alveolar surface area and complexity), compared with age-matched fetuses. In contrast, there was no evidence of alveolar arrest in the ibuprofen-treated newborns. CONCLUSIONS: Ibuprofen-induced patent ductus arteriosus closure improved pulmonary mechanics, decreased total lung water, increased epithelial sodium channel expression, and decreased the detrimental effects of preterm birth on alveolarization.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Permeabilidade do Canal Arterial/tratamento farmacológico , Ibuprofeno/uso terapêutico , Pulmão/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/química , Permeabilidade do Canal Arterial/metabolismo , Permeabilidade do Canal Arterial/fisiopatologia , Canais Epiteliais de Sódio/metabolismo , Água Extravascular Pulmonar/metabolismo , Feminino , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Hemodinâmica , Mediadores da Inflamação/metabolismo , Pulmão/anatomia & histologia , Pulmão/embriologia , Pulmão/fisiologia , Masculino , Papio papio , Fosfatidilcolinas/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA