Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heart Vessels ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981910

RESUMO

Continuous intravenous adenosine triphosphate (ATP) administration is the standard method for inducing maximal hyperemia in fractional flow reserve (FFR) measurements. Several cases have demonstrated fluctuations in the ratio of mean distal coronary pressure to mean arterial pressure (Pd/Pa) value during ATP infusion, which raised our suspicions of FFR value inaccuracy. This study aimed to investigate our hypothesis that Pd/Pa fluctuations may indicate inaccurate FFR measurements caused by insufficient hyperemia. We examined 57 consecutive patients with angiographically intermediate coronary lesions who underwent fractional flow reverse (FFR) measurements in our hospital between November 2016 and September 2018. Pd/Pa was measured after continuous ATP administration (150 µg/kg/min) via a peripheral forearm vein for 5 min (FFRA); and we analyzed the FFR value variation in the final 20 s of the 5 min, defining 'Fluctuation' as variation range > 0.03. Then, 2 mg of nicorandil was administered into the coronary artery during continued ATP infusion, and the Pd/Pa was remeasured (FFRA+N). Fluctuations were observed in 23 of 57 patients. The cases demonstrating discrepancies of > 0.05 between FFRA and FFRA+N were observed more frequently in the fluctuation group than in the non-fluctuation group (12/23 vs. 1/34; p < 0.0001). The discrepancy between FFRA and FFRA+N values was smaller in the non-fluctuation group (mean difference ± SD; -0.00026 ± 0.04636 vs. 0.02608 ± 0.1316). Pd/Pa fluctuation with continuous ATP administration could indicate inaccurate FFR measurements caused by incomplete hyperemia. Additional vasodilator administration may achieve further hyperemia when Pd/Pa fluctuations are observed.

4.
J Cardiol Cases ; 23(6): 274-280, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34093907

RESUMO

Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome. Treatment for SCAD includes conservative approaches, percutaneous coronary intervention (PCI), and coronary artery bypass graft surgery. Although the success rate of PCI is low, conservative treatment often leads to a good clinical course. Three patients with SCAD who were conservatively treated with intra-aortic balloon pumping without coronary intervention are presented. All three patients continue to do well. .

6.
Sci Rep ; 11(1): 6722, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762690

RESUMO

Prognosis of severe heart failure remains poor. Urgent new therapies are required. Some heart failure patients do not respond to established multidisciplinary treatment and are classified as "non-responders". The outcome is especially poor for non-responders, and underlying mechanisms are largely unknown. Mitofusin-1 (Mfn1), a mitochondrial fusion protein, is significantly reduced in non-responding patients. This study aimed to elucidate the role of Mfn1 in the failing heart. Twenty-two idiopathic dilated cardiomyopathy (IDCM) patients who underwent endomyocardial biopsy of intraventricular septum were included. Of the 22 patients, 8 were non-responders (left ventricular (LV) ejection fraction (LVEF) of < 10% improvement at late phase follow-up). Electron microscopy (EM), quantitative PCR, and immunofluorescence studies were performed to explore the biological processes and molecules involved in failure to respond. Studies in cardiac specific Mfn1 knockout mice (c-Mfn1 KO), and in vitro studies with neonatal rat ventricular myocytes (NRVMs) were also conducted. A significant reduction in mitochondrial size in cardiomyocytes, and Mfn1, was observed in non-responders. A LV pressure overload with thoracic aortic constriction (TAC) c-Mfn1 KO mouse model was generated. Systolic function was reduced in c-Mfn1 KO mice, while mitochondria alteration in TAC c-Mfn1 KO mice increased. In vitro studies in NRVMs indicated negative regulation of Mfn1 by the ß-AR/cAMP/PKA/miR-140-5p pathway resulting in significant reduction in mitochondrial respiration of NRVMs. The level of miR140-5p was increased in cardiac tissues of non-responders. Mfn1 is a biomarker of heart failure in non-responders. Therapies targeting mitochondrial dynamics and homeostasis are next generation therapy for non-responding heart failure patients.


Assuntos
Biomarcadores , Cardiomiopatia Dilatada/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Animais , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/etiologia , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Feminino , GTP Fosfo-Hidrolases/genética , Expressão Gênica , Testes de Função Cardíaca , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Miócitos Cardíacos/ultraestrutura , Especificidade de Órgãos/genética
7.
Nat Aging ; 1(12): 1117-1126, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-37117524

RESUMO

Elimination of senescent cells (senolysis) was recently reported to improve normal and pathological changes associated with aging in mice1,2. However, most senolytic agents inhibit antiapoptotic pathways3, raising the possibility of off-target effects in normal tissues. Identification of alternative senolytic approaches is therefore warranted. Here we identify glycoprotein nonmetastatic melanoma protein B (GPNMB) as a molecular target for senolytic therapy. Analysis of transcriptome data from senescent vascular endothelial cells revealed that GPNMB was a molecule with a transmembrane domain that was enriched in senescent cells (seno-antigen). GPNMB expression was upregulated in vascular endothelial cells and/or leukocytes of patients and mice with atherosclerosis. Genetic ablation of Gpnmb-positive cells attenuated senescence in adipose tissue and improved systemic metabolic abnormalities in mice fed a high-fat diet, and reduced atherosclerotic burden in apolipoprotein E knockout mice on a high-fat diet. We then immunized mice against Gpnmb and found a reduction in Gpnmb-positive cells. Senolytic vaccination also improved normal and pathological phenotypes associated with aging, and extended the male lifespan of progeroid mice. Our results suggest that vaccination targeting seno-antigens could be a potential strategy for new senolytic therapies.


Assuntos
Senescência Celular , Longevidade , Camundongos , Animais , Masculino , Senoterapia , Células Endoteliais , Camundongos Knockout , Fenótipo
8.
J Mol Cell Cardiol ; 129: 105-117, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30790589

RESUMO

p53 is a guardian of the genome that protects against carcinogenesis. There is accumulating evidence that p53 is activated with aging. Such activation has been reported to contribute to various age-associated pathologies, but its role in vascular dysfunction is largely unknown. The aim of this study was to investigate whether activation of endothelial p53 has a pathological effect in relation to endothelial function. We established endothelial p53 loss-of-function and gain-of-function models by breeding endothelial-cell specific Cre mice with floxed Trp53 or floxed Mdm2/Mdm4 mice, respectively. Then we induced diabetes by injection of streptozotocin. In the diabetic state, endothelial p53 expression was markedly up-regulated and endothelium-dependent vasodilatation was significantly impaired. Impairment of vasodilatation was significantly ameliorated in endothelial p53 knockout (EC-p53 KO) mice, and deletion of endothelial p53 also significantly enhanced the induction of angiogenesis by ischemia. Conversely, activation of endothelial p53 by deleting Mdm2/Mdm4 reduced both endothelium-dependent vasodilatation and ischemia-induced angiogenesis. Introduction of p53 into human endothelial cells up-regulated the expression of phosphatase and tensin homolog (PTEN), thereby reducing phospho-eNOS levels. Consistent with these results, the beneficial impact of endothelial p53 deletion on endothelial function was attenuated in EC-p53 KO mice with an eNOS-deficient background. These results show that endothelial p53 negatively regulates endothelium-dependent vasodilatation and ischemia-induced angiogenesis, suggesting that inhibition of endothelial p53 could be a novel therapeutic target in patients with metabolic disorders.


Assuntos
Endotélio Vascular/fisiopatologia , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Isquemia/complicações , Isquemia/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Permeabilidade Capilar , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Endotélio Vascular/metabolismo , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética , Vasodilatação
9.
PLoS One ; 14(2): e0212889, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30807606

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by remodeling and narrowing of the pulmonary arteries, which lead to elevation of right ventricular pressure, heart failure, and death. Proliferation of pulmonary artery smooth muscle cells (PASMCs) is thought to be central to the pathogenesis of PAH, although the underlying mechanisms are still being explored. The protein p53 is involved in cell cycle coordination, DNA repair, apoptosis, and cellular senescence, but its role in pulmonary hypertension (PH) is not fully known. We developed a mouse model of hypoxia-induced pulmonary hypertension (PH) and found significant reduction of p53 expression in the lungs. Our in vitro experiments with metabolomic analyses and the Seahorse XF extracellular flux analyzer indicated that suppression of p53 expression in PASMCs led to upregulation of glycolysis and downregulation of mitochondrial respiration, suggesting a proliferative phenotype resembling that of cancer cells. It was previously shown that systemic genetic depletion of p53 in a murine PH model led to more severe lung manifestations. Lack of information about the role of cell-specific p53 signaling promoted us to investigate it in our mouse PH model with the inducible Cre-loxP system. We generated a mouse model with SMC-specific gain or loss of p53 function by crossing Myh11-Cre/ERT2 mice with floxed Mdm4 mice or floxed Trp53 mice. After these animals were exposed to hypoxia for 4 weeks, we conducted hemodynamic and echocardiographic studies. Surprisingly, the severity of PH was similar in both groups of mice and there were no differences between the genotypes. Our findings in these mice indicate that activation or suppression of p53 signaling in SMCs has a minor role in the pathogenesis of PH and suggest that p53 signaling in other cells (endothelial cells, immune cells, or fibroblasts) may be involved in the progression of this condition.


Assuntos
Hipertensão Pulmonar/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Ecocardiografia , Humanos , Hipertensão Pulmonar/genética , Hipóxia/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética
10.
PLoS One ; 13(8): e0202051, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30106986

RESUMO

Endothelial cells have an important role in maintaining vascular homeostasis. Age-related disorders (including obesity, diabetes, and hypertension) or aging per se induce endothelial dysfunction that predisposes to the development of atherosclerosis. Polyphenols have been reported to suppress age-related endothelial cell disorders, but their role in vascular function is yet to be determined. We investigated the influence of boysenberry polyphenol on vascular health under metabolic stress in a murine model of dietary obesity. We found that administration of boysenberry polyphenol suppressed production of reactive oxygen species (ROS) and increased production of nitric oxide (NO) in the aorta. It has been reported that p53 induces cellular senescence and has a crucial role in age-related disorders, including heart failure and diabetes. Administration of boysenberry polyphenol significantly reduced the endothelial p53 level in the aorta and ameliorated endothelial cell dysfunction in iliac arteries under metabolic stress. Boysenberry polyphenol also reduced ROS and p53 levels in cultured human umbilical vein endothelial cells (HUVECs), while increasing NO production. Uncoupled endothelial nitric oxide synthase (eNOS monomer) is known to promote ROS production. We found that boysenberry polyphenol reduced eNOS monomer levels both in vivo and in vitro, along with an increase of eNOS dimerization. To investigate the components of boysenberry polyphenol mediating these favorable biological effects, we extracted the anthocyanin fractions. We found that anthocyanins contributed to suppression of ROS and p53, in association with increased NO production and eNOS dimerization. In an ex vivo study, anthocyanins promoted relaxation of iliac arteries from mice with dietary obesity. These findings indicate that boysenberry polyphenol and anthocyanins, a major component of this polyphenol, inhibit endothelial dysfunction and contribute to maintenance of vascular homeostasis.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Polifenóis/farmacologia , Rosales/química , Animais , Antocianinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Polifenóis/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos
11.
Int Heart J ; 59(4): 837-844, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-29794381

RESUMO

Previous studies have suggested that cellular senescence plays a central role in the progression of pathologic changes in the failing heart. It is well known that the sympathetic nervous system is activated in patients with heart failure, and this change is associated with poor clinical outcomes. Sympathetic activation increases the levels of various catecholamines, such as epinephrine and norepinephrine, but the contribution of these catecholamines to cellular senescence associated with heart failure remains to be determined. We found that catecholamine infusion induced senescence of endothelial cells and bone marrow cells, and promoted cardiac dysfunction in mice. In C57BL/6NCr mice, the continuous infusion of isoproterenol-induced cardiac inflammation and cardiac dysfunction. Expression of p53, a master regulator of cellular senescence, was increased in the cardiac tissue and bone marrow cells of these mice. Suppression of cellular senescence by genetic deletion of p53 in endothelial cells or bone marrow cells led to improvement of isoproterenol-induced cardiac dysfunction. In vitro studies showed that adrenergic signaling increased the expression of p53 and adhesion molecules by endothelial cells and macrophages. Our results indicate that catecholamine-induced senescence of endothelial cells and bone marrow cells plays a pivotal role in the progression of heart failure. Suppression of catecholamine-p53 signaling is crucial for inhibition of remodeling in the failing heart.


Assuntos
Células da Medula Óssea , Catecolaminas , Senescência Celular , Células Endoteliais , Insuficiência Cardíaca , Isoproterenol/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Genes p53/fisiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Simpatomiméticos/farmacologia
12.
Int Heart J ; 59(3): 607-613, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29681573

RESUMO

Vascular cells have a finite lifespan and eventually enter irreversible growth arrest called cellular senescence. We have previously suggested that vascular cell senescence contributes to the pathogenesis of human atherosclerosis. Amlodipine is a mixture of two enantiomers, one of which (S- enantiomer) has L-type channel blocking activity, while the other (R+ enantiomer) shows ~1000-fold weaker channel blocking activity than S- enantiomer and has other unknown effects. It has been reported that amlodipine inhibits the progression of atherosclerosis in humans, but the molecular mechanism of this beneficial effect remains unknown. Apolipoprotein E-deficient mice on a high-fat diet were treated with amlodipine, its R+ enantiomer or vehicle for eight weeks. Compared with vehicle treatment, both amlodipine and the R+ enantiomer significantly reduced the number of senescent vascular cells and inhibited plaque formation to a similar extent. Expression of the pro-inflammatory molecule interleukin-1ß was markedly upregulated in vehicle-treated mice, but was inhibited to a similar extent by treatment with amlodipine or the R+ enantiomer. Likewise, activation of p53 (a critical inducer of senescence) was markedly suppressed by treatment with amlodipine or the R+ enantiomer. These results suggest that amlodipine inhibits vascular cell senescence and protects against atherogenesis at least partly by a mechanism that is independent of calcium channel blockade.


Assuntos
Anlodipino/farmacologia , Aterosclerose/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Senescência Celular/efeitos dos fármacos , Animais , Western Blotting , Canais de Cálcio/efeitos dos fármacos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Proteína Supressora de Tumor p53/metabolismo
13.
PLoS One ; 12(8): e0182422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771625

RESUMO

Dipeptidyl peptidase 4 inhibitors are used worldwide in the management of diabetes, but their role in the prevention or treatment of cardiovascular disorders has yet to be defined. We found that linagliptin, a DPP-4 inhibitor, suppressed capillary rarefaction in the hearts of mice with dietary obesity. Metabolomic analysis performed with capillary electrophoresis/mass spectrometry (LC-MS/MS) showed that linagliptin promoted favorable metabolic remodeling in cardiac tissue, which was characterized by high levels of citrulline and creatine. DNA microarray analysis revealed that the cardiac tissue level of early growth response protein 1 (EGR-1), which activates angiogenesis, was significantly reduced in untreated mice with dietary obesity, while this decrease was inhibited by administration of linagliptin. Mature fibroblast growth factor 2 (FGF-2) has a putative truncation site for DPP-4 at the NH2-terminal, and LC-MS/MS showed that recombinant DPP-4 protein cleaved the NH2-terminal dipeptides of mature FGF-2. Incubation of cultured neonatal rat cardiomyocytes with FGF-2 increased Egr1 expression, while it was suppressed by recombinant DPP-4 protein. Furthermore, vascular endothelial growth factor-A had a critical role in mediating FGF-2/EGR-1 signaling. In conclusion, pharmacological inhibition of DPP-4 suppressed capillary rarefaction and contributed to favorable remodeling of cardiac metabolism in mice with dietary obesity.


Assuntos
Dipeptidil Peptidase 4/química , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Cardiopatias/prevenção & controle , Linagliptina/farmacologia , Isquemia Miocárdica/prevenção & controle , Sístole/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cardiopatias/etiologia , Cardiopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/etiologia , Isquemia Miocárdica/metabolismo , Obesidade/complicações , Ratos , Ratos Wistar , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA