Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(10): 1354-1362.e6, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029764

RESUMO

The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/genética
2.
J Virol ; 95(14): e0237420, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33910954

RESUMO

We describe a mammalian cell-based assay to identify coronavirus 3CL protease (3CLpro) inhibitors. This assay is based on rescuing protease-mediated cytotoxicity and does not require live virus. By enabling the facile testing of compounds across a range of 15 distantly related coronavirus 3CLpro enzymes, we identified compounds with broad 3CLpro-inhibitory activity. We also adapted the assay for use in compound screening and in doing so uncovered additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CLpro inhibitors. We observed strong concordance between data emerging from this assay and those obtained from live-virus testing. The reported approach democratizes the testing of 3CLpro inhibitors by developing a simplified method for identifying coronavirus 3CLpro inhibitors that can be used by the majority of laboratories, rather than the few with extensive biosafety infrastructure. We identified two lead compounds, GC376 and compound 4, with broad activity against all 3CL proteases tested, including 3CLpro enzymes from understudied zoonotic coronaviruses. IMPORTANCE Multiple coronavirus pandemics have occurred over the last 2 decades. This has highlighted a need to be proactive in the development of therapeutics that can be readily deployed in the case of future coronavirus pandemics. We developed and validated a simplified cell-based assay for the identification of chemical inhibitors of 3CL proteases encoded by a wide range of coronaviruses. This assay is reporter free, does not require specialized biocontainment, and is optimized for performance in high-throughput screening. By testing reported 3CL protease inhibitors against a large collection of 3CL proteases with variable sequence similarity, we identified compounds with broad activity against 3CL proteases and uncovered structural insights into features that contribute to their broad activity. Furthermore, we demonstrated that this assay is suitable for identifying chemical inhibitors of proteases from families other than 3CL proteases.


Assuntos
COVID-19/enzimologia , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Células HEK293 , Humanos , Tratamento Farmacológico da COVID-19
3.
Front Immunol ; 11: 2043, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973811

RESUMO

Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs - and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Epitopos de Linfócito T/imunologia , Galactosilceramidas/administração & dosagem , Trombomodulina/metabolismo , Animais , Antígenos de Neoplasias/administração & dosagem , Biomarcadores , Vacinas Anticâncer/imunologia , Humanos , Imunofenotipagem , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteômica/métodos , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/imunologia , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Sci Rep ; 10(1): 5350, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210344

RESUMO

The major barrier to a HIV-1 cure is the persistence of latent genomes despite treatment with antiretrovirals. To investigate host factors which promote HIV-1 latency, we conducted a genome-wide functional knockout screen using CRISPR-Cas9 in a HIV-1 latency cell line model. This screen identified IWS1, POLE3, POLR1B, PSMD1, and TGM2 as potential regulators of HIV-1 latency, of which PSMD1 and TMG2 could be confirmed pharmacologically. Further investigation of PSMD1 revealed that an interacting enzyme, the deubiquitinase UCH37, was also involved in HIV-1 latency. We therefore conducted a comprehensive evaluation of the deubiquitinase family by gene knockout, identifying several deubiquitinases, UCH37, USP14, OTULIN, and USP5 as possible HIV-1 latency regulators. A specific inhibitor of USP14, IU1, reversed HIV-1 latency and displayed synergistic effects with other latency reversal agents. IU1 caused degradation of TDP-43, a negative regulator of HIV-1 transcription. Collectively, this study is the first comprehensive evaluation of deubiquitinases in HIV-1 latency and establishes that they may hold a critical role.


Assuntos
Sistemas CRISPR-Cas , Enzimas Desubiquitinantes/genética , Técnicas de Inativação de Genes/métodos , HIV-1/fisiologia , Latência Viral , DNA Polimerase III/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Enzima Desubiquitinante CYLD/genética , Enzimas Desubiquitinantes/antagonistas & inibidores , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , HIV-1/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Células Jurkat , Nucleoproteínas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Ubiquitina Tiolesterase/genética , Latência Viral/efeitos dos fármacos
5.
J Infect Dis ; 221(2): 201-213, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31647546

RESUMO

BACKGROUND: For the purpose of studying functional human dendritic cells (DCs) in a humanized mouse model that mimics the human immune system (HIS), a model referred to as HIS mice was established. METHODS: Human immune system mice were made by engrafting NOD/SCID/IL2Rgammanull (NSG) mice with human hematopoietic stem cells (HSCs) following the transduction of genes encoding human cytokines and human leukocyte antigen (HLA)-A2.1 by adeno-associated virus serotype 9 (AAV9) vectors. RESULTS: Our results indicate that human DC subsets, such as CD141+CD11c+ and CD1c+CD11c+ myeloid DCs, distribute throughout several organs in HIS mice including blood, bone marrow, spleen, and draining lymph nodes. The CD141+CD11c+ and CD1c+CD11c+ human DCs isolated from HIS mice immunized with adenoviruses expressing malaria/human immunodeficiency virus (HIV) epitopes were able to induce the proliferation of malaria/HIV epitopes-specific human CD8+ T cells in vitro. Upregulation of CD1c was also observed in human CD141+ DCs 1 day after immunization with the adenovirus-based vaccines. CONCLUSIONS: Establishment of such a humanized mouse model that mounts functional human DCs enables preclinical assessment of the immunogenicity of human vaccines in vivo.


Assuntos
Vacinas contra Adenovirus/imunologia , Antígenos de Superfície/imunologia , Células Dendríticas/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Trombomodulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA