Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15648, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123370

RESUMO

Many PTMs dysregulation is known to be the major cause of many cancers including HCV induced HCC. PTMs of hepatitis C virus (HCV) regions NS3/4A, NS5A and NS5B are crucial for proper protein functions and replication that directly affect the generation of infectious virus particles and completion of its life cycle. In this study, we have performed comprehensive analysis of PTMs within HCV non-structural proteins (NS3/4A, NS5A and NS5B) through bioinformatics analysis to examine post-translational crosstalk between phosphorylation, palmitoylation, methylation, acetylation and ubiquitination sites in selected viral proteins. Our analysis has revealed many highly putative PTMs sites that are also conserved among major genotypes conferring the importance of these sites. We have also analysed viral 3D structures in their modified and unmodified forms to address extent and signatures of structural changes upon PTM. This study provides evidence that PTMs induce significant conformational changes and make viral proteins more stable. To find the potential role of PTMs in HCV induced HCC, docking analysis between selected viral proteins and p38-MAPK has been performed which also confirms their strong association with HCV induced HCC. The major findings proposed that PTMs at specific sites of HCV viral proteins could dysregulate specific pathways that cause the development of HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Hepacivirus/genética , Hepatite C/complicações , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Virais/genética
2.
Genes (Basel) ; 14(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36672755

RESUMO

Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Hepáticas/patologia
3.
Bioinform Biol Insights ; 15: 11779322211021430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163151

RESUMO

BACKGROUND: A recent COVID-19 pandemic has resulted in a large death toll rate globally and even no cure or vaccine has been successfully employed to combat this disease. Patients have been reported with multi-organ dysfunction along with acute respiratory distress syndrome which implies a critical situation for patients and made them difficult to breathe and survive. Moreover, pathology of COVID-19 is also related to cytokine storm which indicates the elevated levels of interleukin (IL)-1, IL-6, IL-12, and IL-18 along with tumor necrosis factor (TNF)-α. Among them, the proinflammatory cytokine IL-6 has been reported to be induced via binding of severe acute respiratory syndrome coronavirus 2 (SARS)-CoV-2 to the host receptors. METHODOLOGY: Interleukin-6 blockade has been proposed to constitute novel therapeutics against COVID-19. Thus, in this study, 15 phytocompounds with known antiviral activity have been subjected to test for their inhibitory effect on IL-6. Based on the affinity prediction, top 3 compounds (isoorientin, lupeol, and andrographolide) with best scores were selected for 50 ns molecular dynamics simulation and MMGB/PBSA binding free energy analysis. RESULTS: Three phytocompounds including isoorientin, lupeol, and andrographolide have shown strong interactions with the targeted protein IL-6 with least binding energies (-7.1 to -7.7 kcal/mol). Drug-likeness and ADMET profiles of prioritized phytocompounds are also very prominsing and can be further tested to be potential IL-6 blockers and thus benficial for COVID-19 treatment. The moelcular dynamics simulation couple with MMGB/PBSA binding free energy estimation validated conformational stability of the ligands and stronger intermolecular binding. The mean RMSD of the complexes is as: IL6-isoorientin complex (3.97 Å ± 0.77), IL6-lupeol (3.97 Å ± 0.76), and IL6-andrographolide complex (3.96 Å ± 0.77). In addition, the stability observation was affirmed by compounds mean RMSD: isoorientin (0.72 Å ± 0.32), lupeol (mean 0.38 Å ± 0.08), and andrographolide (1.09 Å ± 0.49). A similar strong agreement on systems stability was unraveled by MMGB/PBSA that found net binding net ~ -20 kcal/mol for the complexes dominated by van der Waal interaction energy. CONCLUSION: It has been predicted that proposing potential IL-6 inhibitors with less side effects can help critical COVID-19 patients because it may control the cytokine storm, a major responsible factor of its pathogenesis. In this study, 3 potential phytocompounds have been proposed to have inhibitory effect on IL-6 that can be tested as potential therapeutic options against SARS-CoV-2.

4.
RNA Biol ; 18(1): 1-15, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615049

RESUMO

Circular RNAs (circRNAs) are ubiquitously expressed, covalently closed rings, produced by pre-mRNA splicing in a reversed order during post-transcriptional processing. Circularity endows 3'-5'-linked circRNAs with stability and resistance to exonucleolytic degradation which raises the question whether circRNAs may be relevant as potential therapeutic targets or agents. High stability in biological systems is the most remarkable property and a major criterion for why circRNAs could be exploited for a range of RNA-centred medical applications. Even though various biological roles and regulatory functions of circRNAs have been reported, their in-depth study is challenging because of their circular structure and sequence-overlap with linear mRNA counterparts. Moreover, little is known about their role in viral infections and in antiviral immune responses. We believe that an in-depth and detailed understanding of circRNA mediated viral protein regulations will increase our knowledge of the biology of these novel molecules. In this review, we aimed to provide a comprehensive basis and overview on the biogenesis, significance and regulatory roles of circRNAs in the context of antiviral immune responses and viral infections including hepatitis C virus infection, hepatitis B virus infection, hepatitis delta virus infection, influenza A virus infection, Epstein-Barr virus infection, kaposi's sarcoma herpesvirus infection, human cytomegalovirus infection, herpes simplex virus infection, human immunodeficiency virus infection, porcine epidemic diarrhoea virus infection, ORF virus infection, avian leukosis virus infection, simian vacuolating virus 40 infection, transmissible gastroenteritis coronavirus infection, and bovine viral diarrhoea virus infection. We have also discussed the critical regulatory role of circRNAs in provoking antiviral immunity, providing evidence for implications as therapeutic agents and as diagnostic markers.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Medicina de Precisão/métodos , RNA Circular/imunologia , Viroses/genética , Viroses/imunologia , Animais , Biomarcadores/análise , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Bovinos , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Infecções por HIV/genética , Hepatite C/genética , Infecções por Herpesviridae/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/genética , Vírus de RNA/genética , RNA Circular/fisiologia , Suínos , Doenças dos Suínos/virologia
5.
Rev Med Virol ; 28(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29272060

RESUMO

Hepatitis E virus (HEV) is the leading cause of acute viral hepatitis worldwide and an emerging cause of chronic infection in immunocompromised patients. As with viral infections in general, immune responses are critical to determine the outcome of HEV infection. Accumulating studies in cell culture, animal models and patients have improved our understanding of HEV immunopathogenesis and informed the development of new antiviral therapies and effective vaccines. In this review, we discuss the recent progress on innate and adaptive immunity in HEV infection, and the implications for the devolopment of effective vaccines and immune-based therapies.


Assuntos
Vírus da Hepatite E/imunologia , Hepatite E/imunologia , Hepatite E/virologia , Imunidade Adaptativa , Antivirais/farmacologia , Antivirais/uso terapêutico , Genoma Viral , Hepatite E/prevenção & controle , Hepatite E/terapia , Vírus da Hepatite E/genética , Humanos , Imunidade Inata , Imunoterapia , Transdução de Sinais , Vacinas contra Hepatite Viral/imunologia
6.
Sci Rep ; 7(1): 11448, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904393

RESUMO

Among solid tumors, hepatocellular carcinoma (HCC) emerges as a prototypical therapy-resistant tumor. Considering the emerging sorafenib resistance crisis in HCC, future studies are urgently required to overcome resistance. Recently noncoding RNAs (ncRNAs) have emerged as significant regulators in signalling pathways involved in cancer drug resistance and pharmacologically targeting these ncRNAs might be a novel stratagem to reverse drug resistance. In the current study, using a hybrid Petri net based computational model, we have investigated the harmonious effect of miR-17-92 cluster inhibitors/mimics and circular RNAs on sorafenib resistant HCC cells in order to explore potential resistance mechanisms and to identify putative targets for sorafenib-resistant HCC cells. An integrated model was developed that incorporates seven miRNAs belonging to miR-17-92 cluster (hsa-miR-17-5p, hsa-miR-17-3p, hsa-miR-19a, hsa-miR-19b, hsa-miR-18a, hsa-miR-20a and hsa-miR-92) and crosstalk of two signaling pathways (EGFR and IL-6) that are differentially regulated by these miRNAs. The mechanistic connection was proposed by the correlation between members belonging to miR-17-92 cluster and corresponding changes in the protein levels of their targets in HCC, specifically those targets that have verified importance in sorafenib resistance. Current findings uncovered potential pathway features, underlining the significance of developing modulators of this cluster to combat drug resistance in HCC.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Família Multigênica , Farmacogenética , Sorafenibe/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Genes erbB-1 , Humanos , Interleucina-6/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transdução de Sinais
7.
Front Microbiol ; 8: 1682, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932213

RESUMO

Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.

8.
Int J Mol Sci ; 18(1)2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28085066

RESUMO

Autophagy, an evolutionary conserved multifaceted lysosome-mediated bulk degradation system, plays a vital role in liver pathologies including hepatocellular carcinoma (HCC). Post-translational modifications (PTMs) and genetic variations in autophagy components have emerged as significant determinants of autophagy related proteins. Identification of a comprehensive spectrum of genetic variations and PTMs of autophagy related proteins and their impact at molecular level will greatly expand our understanding of autophagy based regulation. In this study, we attempted to identify high risk missense mutations that are highly damaging to the structure as well as function of autophagy related proteins including LC3A, LC3B, BECN1 and SCD1. Number of putative structural and functional residues, including several sites that undergo PTMs were also identified. In total, 16 high-risk SNPs in LC3A, 18 in LC3B, 40 in BECN1 and 43 in SCD1 were prioritized. Out of these, 2 in LC3A (K49A, K51A), 1 in LC3B (S92C), 6 in BECN1 (S113R, R292C, R292H, Y338C, S346Y, Y352H) and 6 in SCD1 (Y41C, Y55D, R131W, R135Q, R135W, Y151C) coincide with potential PTM sites. Our integrated analysis found LC3B Y113C, BECN1 I403T, SCD1 R126S and SCD1 Y218C as highly deleterious HCC-associated mutations. This study is the first extensive in silico mutational analysis of the LC3A, LC3B, BECN1 and SCD1 proteins. We hope that the observed results will be a valuable resource for in-depth mechanistic insight into future investigations of pathological missense SNPs using an integrated computational platform.


Assuntos
Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mutação de Sentido Incorreto , Relação Quantitativa Estrutura-Atividade , Sequência de Aminoácidos , Sítios de Ligação , Carcinoma Hepatocelular/metabolismo , Biologia Computacional/métodos , Sequência Conservada , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Evolução Molecular , Humanos , Neoplasias Hepáticas/metabolismo , Modelos Moleculares , Fosforilação , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA