Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(7): e15652, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024297

RESUMO

Development of autosomal dominant polycystic kidney disease (ADPKD) involves renal epithelial cell abnormalities. Cystic fluid contains a high level of ATP that, among other effects, leads to a reduced reabsorption of electrolytes in cyst-lining cells, and thus results in cystic fluid accumulation. Earlier, we demonstrated that Pkd1RC/RC mice, a hypomorphic model of ADPKD, exhibit increased expression of pannexin-1, a membrane channel capable of ATP release. In the current study, we found that human ADPKD cystic epithelia have higher pannexin-1 abundance than normal collecting ducts. We hypothesized that inhibition of pannexin-1 function with probenecid can be used to attenuate ADPKD development. Renal function in male and female Pkd1RC/RC and control mice was monitored between 9 and 20 months of age. To test the therapeutic effects of probenecid (a uricosuric agent and a pannexin-1 blocker), osmotic minipumps were implanted in male and female Pkd1RC/RC mice, and probenecid or vehicle was administered for 42 days until 1 year of age. Probenecid treatment improved glomerular filtration rates and slowed renal cyst formation in male mice (as shown in histopathology). The mechanistic effects of probenecid on sodium reabsorption and fluid transport were tested on polarized mpkCCDcl4 cells subjected to short-circuit current measurements, and in 3D cysts grown in Matrigel. In the mpkCCDcl4 epithelial cell line, probenecid elicited higher ENaC currents and attenuated in vitro cyst formation, indicating lower sodium and less fluid retention in the cysts. Our studies open new avenues of research into targeting pannexin-1 in ADPKD pathology.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Masculino , Feminino , Humanos , Animais , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Probenecid/uso terapêutico , Modelos Animais de Doenças , Rim/metabolismo , Progressão da Doença , Trifosfato de Adenosina/metabolismo , Cistos/metabolismo , Cistos/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/farmacologia
2.
Clin Sci (Lond) ; 135(21): 2521-2540, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751394

RESUMO

This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.


Assuntos
Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Recessivo/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Humanos , Transporte de Íons , Rim/fisiopatologia , Proteínas de Membrana Transportadoras/genética , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/fisiopatologia , Rim Policístico Autossômico Recessivo/genética , Rim Policístico Autossômico Recessivo/fisiopatologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 321(5): H948-H962, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597184

RESUMO

Oral and gum health have long been associated with incidence and outcomes of cardiovascular disease. Periodontal disease increases myocardial infarction (MI) mortality by sevenfold through mechanisms that are not fully understood. The goal of this study was to evaluate whether lipopolysaccharide (LPS) from a periodontal pathogen accelerates inflammation after MI through memory T-cell activation. We compared four groups [no MI, chronic LPS, day 1 after MI, and day 1 after MI with chronic LPS (LPS + MI); n = 68 mice] using the mouse heart attack research tool 1.0 database and tissue bank coupled with new analyses and experiments. LPS + MI increased total CD8+ T cells in the left ventricle versus the other groups (P < 0.05 vs. all). Memory CD8+ T cells (CD44 + CD27+) were 10-fold greater in LPS + MI than in MI alone (P = 0.02). Interleukin (IL)-4 stimulated splenic CD8+ T cells away from an effector phenotype and toward a memory phenotype, inducing secretion of factors associated with the Wnt/ß-catenin signaling that promoted monocyte migration and decreased viability. To dissect the effect of CD8+ T cells after MI, we administered a major histocompatibility complex-I-blocking antibody starting 7 days before MI, which prevented effector CD8+ T-cell activation without affecting the memory response. The reduction in effector cells diminished infarct wall thinning but had no effect on macrophage numbers or MertK expression. LPS + MI + IgG attenuated macrophages within the infarct without effecting CD8+ T cells, suggesting these two processes were independent. Overall, our data indicate that effector and memory CD8+ T cells at post-MI day 1 are amplified by chronic LPS to potentially promote infarct wall thinning.NEW & NOTEWORTHY Although there is a well-documented link between periodontal disease and heart health, the mechanisms are unclear. Our study indicates that in response to circulating periodontal endotoxins, memory CD8+ T cells are activated, resulting in an acceleration of macrophage-mediated inflammation after MI. Blocking activation of effector CD8+ T cells had no effect on the macrophage numbers or wall thinning at post-MI day 1, indicating that this response was likely due in part to memory CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Lipopolissacarídeos , Ativação Linfocitária , Infarto do Miocárdio/imunologia , Miocárdio/imunologia , Periodontite/imunologia , Porphyromonas gingivalis , Cicatrização , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Periodontite/induzido quimicamente , Periodontite/metabolismo , Periodontite/patologia , Fagocitose , Fenótipo , Fatores de Tempo
4.
Front Physiol ; 12: 693130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566674

RESUMO

Autosomal dominant (AD) and autosomal recessive (AR) polycystic kidney diseases (PKD) are severe multisystem genetic disorders characterized with formation and uncontrolled growth of fluid-filled cysts in the kidney, the spread of which eventually leads to the loss of renal function. Currently, there are no treatments for ARPKD, and tolvaptan is the only FDA-approved drug that alleviates the symptoms of ADPKD. However, tolvaptan has only a modest effect on disease progression, and its long-term use is associated with many side effects. Therefore, there is still a pressing need to better understand the fundamental mechanisms behind PKD development. This review highlights current knowledge about the fundamental aspects of PKD development (with a focus on ADPKD) including the PC1/PC2 pathways and cilia-associated mechanisms, major molecular cascades related to metabolism, mitochondrial bioenergetics, and systemic responses (hormonal status, levels of growth factors, immune system, and microbiome) that affect its progression. In addition, we discuss new information regarding non-pharmacological therapies, such as dietary restrictions, which can potentially alleviate PKD.

5.
Ren Fail ; 43(1): 315-324, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33541194

RESUMO

Salt-sensitive (SS) hypertension is accompanied with severe cardiorenal complications. In this condition, elevated blood pressure (BP) resulting from salt retention is associated with counterintuitively lower levels of atrial natriuretic peptide (ANP). In plasma, ANP is degraded by the neprilysin; therefore, pharmacological inhibition of this metalloprotease (i.e., with sacubitril) can be employed to increase ANP level. We have shown earlier that sacubitril in combination with valsartan (75 µg/day each) had beneficial effects on renal function in Dahl SS rats. The goal of this study was to evaluate the effects of a higher dose of sacubitril on renal damage in this model. To induce hypertension, male Dahl SS rats were fed a 4% NaCl diet (HS) for 21 days, and were administered sacubitril (125 µg/day) or vehicle via s.c. osmotic pumps. At the end of the HS challenge, both groups exhibited similar outcomes for GFR, heart weight, plasma electrolytes, BUN, and creatinine. Sacubitril exacerbated kidney hypertrophy, but did not affect levels of renal fibrosis. We also observed aggravated glomerular lesions and increased formation of protein casts in the sacubitril-treated animals compared to controls. Thus, in Dahl SS rats, administration of sacubitril without renin-angiotensin-system blockage had adverse effects on renal disease progression, particularly in regards to glomerular damage and protein cast formation. We can speculate that while ANP levels are increased because of neprilysin inhibition, there are off-target effects of sacubitril, which are detrimental to renal function in the SS hypertensive state.


Assuntos
Aminobutiratos/efeitos adversos , Compostos de Bifenilo/efeitos adversos , Hipertensão/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Neprilisina/antagonistas & inibidores , Insuficiência Renal/patologia , Aminobutiratos/administração & dosagem , Animais , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/metabolismo , Compostos de Bifenilo/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Hipertensão/sangue , Hipertensão/complicações , Glomérulos Renais/patologia , Masculino , Neprilisina/metabolismo , Ratos , Ratos Endogâmicos Dahl , Insuficiência Renal/sangue , Insuficiência Renal/etiologia , Insuficiência Renal/prevenção & controle
6.
Am J Physiol Renal Physiol ; 319(6): F1117-F1124, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135479

RESUMO

Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.


Assuntos
Pesquisa Biomédica , Metabolismo Energético , Hormônios Esteroides Gonadais/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Nefrologia , Animais , Feminino , Humanos , Rim/fisiopatologia , Nefropatias/fisiopatologia , Masculino , Caracteres Sexuais , Fatores Sexuais
7.
J Biol Chem ; 294(17): 6710-6718, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30824539

RESUMO

The exocyst is a highly conserved protein complex found in most eukaryotic cells and is associated with many functions, including protein translocation in the endoplasmic reticulum, vesicular basolateral targeting, and ciliogenesis in the kidney. To investigate the exocyst functions, here we exchanged proline for alanine in the highly conserved VXPX ciliary targeting motif of EXOC5 (exocyst complex component 5), a central exocyst gene/protein, and generated stable EXOC5 ciliary targeting sequence-mutated (EXOC5CTS-m) Madin-Darby canine kidney (MDCK) cells. The EXOC5CTS-m protein was stable and could bind other members of the exocyst complex. Culturing stable control, EXOC5-overexpressing (OE), Exoc5-knockdown (KD), and EXOC5CTS-m MDCK cells on Transwell filters, we found that primary ciliogenesis is increased in EXOC5 OE cells and inhibited in Exoc5-KD and EXOC5CTS-m cells. Growing cells in collagen gels until the cyst stage, we noted that EXOC5-OE cells form mature cysts with single lumens more rapidly than control cysts, whereas Exoc5-KD and EXOC5CTS-m MDCK cells failed to form mature cysts. Adding hepatocyte growth factor to induce tubulogenesis, we observed that EXOC5-OE cell cysts form tubules more efficiently than control MDCK cell cysts, EXOC5CTS-m MDCK cell cysts form significantly fewer tubules than control cell cysts, and Exoc5-KD cysts did not undergo tubulogenesis. Finally, we show that EXOC5 mRNA almost completely rescues the ciliary phenotypes in exoc5-mutant zebrafish, unlike the EXOC5CTS-m mRNA, which could not efficiently rescue the phenotypes. Taken together, these results indicate that the exocyst, acting through the primary cilium, is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis.


Assuntos
Cílios/fisiologia , Cistos/patologia , Túbulos Renais/crescimento & desenvolvimento , Rim/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , DNA Complementar/genética , Cães , Técnicas de Silenciamento de Genes , Humanos , Nefropatias/patologia , Células Madin Darby de Rim Canino , Mutagênese Sítio-Dirigida , Ligação Proteica , Transporte Proteico , RNA Mensageiro/metabolismo , Proteínas de Transporte Vesicular/genética , Peixe-Zebra
8.
EBioMedicine ; 40: 663-674, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30745171

RESUMO

BACKGROUND: Autosomal Recessive Polycystic Kidney Disease (ARPKD) is marked by cyst formation in the renal tubules, primarily in the collecting duct (CD) system, ultimately leading to end-stage renal disease. Patients with PKD are generally advised to restrict their dietary sodium intake. This study was aimed at testing the outcomes of dietary salt manipulation in ARPKD. METHODS: PCK/CrljCrlPkhd1pck/CRL (PCK) rats, a model of ARPKD, were fed a normal (0.4% NaCl; NS), high salt (4% NaCl; HS), and sodium-deficient (0.01% NaCl; SD) diets for 8 weeks. Immunohistochemistry, GFR measurements, balance studies, and molecular biology approaches were applied to evaluate the outcomes of the protocol. Renin-angiotensin-aldosterone system (RAAS) levels were assessed using LC-MS/MS, and renal miRNA profiles were studied. FINDINGS: Both HS and SD diets resulted in an increase in cystogenesis. However, SD diet caused extensive growth of cysts in the renal cortical area, and hypertrophy of the tissue; RAAS components were enhanced in the SD group. We observed a reduction in epithelial Na+ channel (ENaC) expression in the SD group, accompanied with mRNA level increase. miRNA assay revealed that renal miR-9a-5p level was augmented in the SD group; we showed that this miRNA decreases ENaC channel number in CD cells. INTERPRETATION: Our data demonstrate a mechanism of ARPKD progression during salt restriction that involves activity of ENaC. We further show that miR-9a-5p potentially implicated in this mechanism and that miR-9a-5p downregulates ENaC in cultured CD cells. Our findings open new therapeutic possibilities and highlight the importance of understanding salt reabsorption in ARPKD.


Assuntos
Cistos/etiologia , Dieta Hipossódica/classificação , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim Policístico Autossômico Recessivo/etiologia , Rim Policístico Autossômico Recessivo/metabolismo , Animais , Biomarcadores , Linhagem Celular , Cistos/patologia , Modelos Animais de Doenças , Histocitoquímica , Testes de Função Renal , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Rim Policístico Autossômico Recessivo/patologia , Rim Policístico Autossômico Recessivo/fisiopatologia , Interferência de RNA , Ratos , Cloreto de Sódio na Dieta
9.
Purinergic Signal ; 14(4): 485-497, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30417216

RESUMO

Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis. Cystic fluid of PCK rats and their cortical tissues exhibited significantly higher levels of ATP compared to Sprague Dawley rat kidney cortical interstitium as assessed by highly sensitive ATP enzymatic biosensors. Confocal calcium imaging of the freshly isolated cystic monolayers revealed a stronger response to ATP in a higher range of concentrations (above 100 µM). The removal of extracellular calcium results in the profound reduction of the ATP evoked transient, which suggests calcium entry into the cyst-lining cells is occurring via the extracellular (ionotropic) P2X channels. Further use of pharmacological agents (α,ß-methylene-ATP, 5-BDBD, NF449, isoPPADS, AZ10606120) and immunofluorescent labeling of isolated cystic epithelia allowed us to narrow down potential candidate receptors. In conclusion, our ex vivo study provides direct evidence that the profile of P2 receptors is shifted in ARPKD cystic epithelia in an age-related manner towards prevalence of P2X4 and/or P2X7 receptors, which opens new avenues for the treatment of this disease.


Assuntos
Rim Policístico Autossômico Recessivo/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos/metabolismo , Fatores Etários , Animais , Cálcio/metabolismo , Cistos/metabolismo , Rim/metabolismo , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
Nitric Oxide ; 72: 24-31, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29128399

RESUMO

Nitric Oxide (NO), a potent vasodilator and vital signaling molecule, has been shown to contribute to the regulation of glomerular ultrafiltration. However, whether changes in NO occur in podocytes during the pathogenesis of salt-sensitive hypertension has not yet been thoroughly examined. We showed here that podocytes produce NO, and further hypothesized that hypertensive animals would exhibit reduced NO production in these cells in response to various paracrine factors, which might contribute to the damage of glomeruli filtration barrier and development of proteinuria. To test this, we isolated glomeruli from the kidneys of Dahl salt-sensitive (SS) rats fed a low salt (LS; 0.4% NaCl) or high salt (HS; 4% NaCl, 3 weeks) diets and loaded podocytes with either a combination of NO and Ca2+ fluorophores (DAF-FM and Fura Red, respectively) or DAF-FM alone. Changes in fluorescence were observed with confocal microscopy in response to adenosine triphosphate (ATP), angiotensin II (Ang II), and hydrogen peroxide (H2O2). Application of Ang II resulted in activation of both NO and intracellular calcium ([Ca2+]i) transients. In contrast, ATP promoted [Ca2+]i transients, but did not have any effects on NO production. SS rats fed a HS diet for 3 weeks demonstrated impaired NO production: the response to Ang II or H2O2 in podocytes of glomeruli isolated from SS rats fed a HS diet was significantly reduced compared to rats fed a LS diet. Therefore, glomerular podocytes from hypertensive rats showed a diminished NO release in response to Ang II or oxidative stress, suggesting that podocytic NO signaling is dysfunctional in this condition and likely contributes to the development of kidney injury.


Assuntos
Sinalização do Cálcio , Óxido Nítrico/metabolismo , Podócitos/metabolismo , Angiotensina II/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Barreira de Filtração Glomerular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Glomérulos Renais/citologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Compostos Nitrosos/farmacologia , Podócitos/efeitos dos fármacos , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/efeitos adversos
11.
Am J Physiol Renal Physiol ; 311(6): F1140-F1144, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733370

RESUMO

Protease-activated receptors (PARs) are members of a well-known family of transmembrane G protein-coupled receptors (GPCRs). Four PARs have been identified to date, of which PAR1 and PAR2 are the most abundant receptors, and have been shown to be expressed in the kidney vascular and tubular cells. PAR signaling is mediated by an N-terminus tethered ligand that can be unmasked by serine protease cleavage. The receptors are activated by endogenous serine proteases, such as thrombin (acts on PARs 1, 3, and 4) and trypsin (PAR2). PARs can be involved in glomerular, microvascular, and inflammatory regulation of renal function in both normal and pathological conditions. As an example, it was shown that human glomerular epithelial and mesangial cells express PARs, and these receptors are involved in the pathogenesis of crescentic glomerulonephritis, glomerular fibrin deposition, and macrophage infiltration. Activation of these receptors in the kidney also modulates renal hemodynamics and glomerular filtration rate. Clinical studies further demonstrated that the concentration of urinary thrombin is associated with glomerulonephritis and type 2 diabetic nephropathy; thus, molecular and functional mechanisms of PARs activation can be directly involved in renal disease progression. We briefly discuss here the recent literature related to activation of PAR signaling in glomeruli and the kidney in general and provide some examples of PAR1 signaling in glomeruli podocytes.


Assuntos
Células Epiteliais/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Receptor PAR-1/metabolismo , Animais , Progressão da Doença , Humanos , Rim/patologia , Nefropatias/patologia , Transdução de Sinais/fisiologia
12.
Am J Physiol Renal Physiol ; 311(6): F1135-F1139, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27654892

RESUMO

Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.


Assuntos
Trifosfato de Adenosina/metabolismo , Túbulos Renais Coletores/metabolismo , Doenças Renais Policísticas/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Animais , Proliferação de Células/fisiologia , Humanos , Transporte de Íons/fisiologia
13.
Physiol Rep ; 4(17)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27597769

RESUMO

Cysteine cathepsins are lysosomal enzymes expressed in the kidneys and other tissues, and are involved in the maturation and breakdown of cellular proteins. They have been shown to be integrally involved in the progression of many cardiovascular and renal diseases. The goal of this study was to determine the involvement of cysteine cathepsins in the development of salt-sensitive hypertension and associated kidney damage. In our experiments, Dahl salt-sensitive (SS) rats were fed an 8% high salt NaCl diet and intravenously infused with the irreversible cysteine cathepsin inhibitor E-64 (1 mg/day) or the vehicle (control). Both the control and E-64 infused groups developed significant hypertension and kidney damage, and no difference of the mean arterial pressure and the hypertension-associated albuminuria was observed between the groups. We next tested basal calcium levels in the podocytes of both control and infused groups using confocal calcium imaging. Basal calcium did not differ between the groups, indicative of the lack of a protective or aggravating influence by the cathepsin inhibition. The efficacy of E-64 was tested in Western blotting. Our findings corresponded to the previously reported, E-64 induced increase in cathepsin B and L abundance. We conclude that the inhibition of cysteine cathepsins by E-64 does not have any effects on the blood pressure development and kidney damage, at least under the studied conditions of this model of SS hypertension.


Assuntos
Catepsinas/antagonistas & inibidores , Inibidores de Cisteína Proteinase/administração & dosagem , Hipertensão/induzido quimicamente , Nefropatias/induzido quimicamente , Leucina/análogos & derivados , Administração Intravenosa , Animais , Pressão Sanguínea/efeitos dos fármacos , Catepsina L , Catepsinas/efeitos adversos , Catepsinas/metabolismo , Catepsinas/fisiologia , Cisteína Proteases , Inibidores de Cisteína Proteinase/farmacologia , Hipertensão/fisiopatologia , Nefropatias/fisiopatologia , Leucina/administração & dosagem , Leucina/farmacologia , Masculino , Ratos , Ratos Endogâmicos Dahl , Sódio/metabolismo , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/farmacologia
14.
J Vis Exp ; (103)2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26381526

RESUMO

Cyst initiation and expansion during polycystic kidney disease is a complex process characterized by abnormalities in tubular cell proliferation, luminal fluid accumulation and extracellular matrix formation. Activity of ion channels and intracellular calcium signaling are key physiologic parameters which determine functions of tubular epithelium. We developed a method suitable for real-time observation of ion channels activity with patch-clamp technique and registration of intracellular Ca2+ level in epithelial monolayers freshly isolated from renal cysts. PCK rats, a genetic model of autosomal recessive polycystic kidney disease (ARPKD), were used here for ex vivo analysis of ion channels and calcium flux. Described here is a detailed step-by-step procedure designed to isolate cystic monolayers and non-dilated tubules from PCK or normal Sprague Dawley (SD) rats, and monitor single channel activity and intracellular Ca2+ dynamics. This method does not require enzymatic processing and allows analysis in a native setting of freshly isolated epithelial monolayer. Moreover, this technique is very sensitive to intracellular calcium changes and generates high resolution images for precise measurements. Finally, isolated cystic epithelium can be further used for staining with antibodies or dyes, preparation of primary cultures and purification for various biochemical assays.


Assuntos
Microscopia de Fluorescência/métodos , Técnicas de Patch-Clamp/métodos , Rim Policístico Autossômico Recessivo/patologia , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Cálcio/metabolismo , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Rim Policístico Autossômico Recessivo/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
15.
Pediatr Res ; 77(1-1): 64-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25279988

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease is a genetic disorder characterized by the development of renal cysts of tubular epithelial cell origin. Epithelial Na(+) channel (ENaC) is responsible for sodium reabsorption in the aldosterone-sensitive distal nephron. Here, we investigated the ENaC expression and activity in cystic tissue taken from rats with autosomal recessive polycystic kidney disease. METHODS: Polycystic kidney (PCK) rats were treated with the selective ENaC inhibitor benzamil given in the drinking water, and after 4 or 12 wk, the severity of morphological malformations in the kidneys was assessed. ENaC and aquaporin-2 expression and ENaC activity were tested with immunohistochemistry and patch-clamp electrophysiology, respectively. RESULTS: Treatment with benzamil exacerbated development of cysts compared with the vehicle-treated animals. In contrast, the 12 wk of treatment with the loop diuretic furosemide had no effect on cystogenesis. Single-channel patch-clamp analysis revealed that ENaC activity in the freshly isolated cystic epithelium was significantly lower than that in the noncystic collecting ducts isolated from PCK or normal Sprague-Dawley rats. Immunohistochemical analysis confirmed that ß-ENaC and aquaporin-2 expressions in cysts are decreased compared with nondilated tubules from PCK rat kidneys. CONCLUSION: We demonstrated that cystic epithelium exhibits low ENaC activity and this phenomenon can contribute to cyst progression.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Rim Policístico Autossômico Recessivo/metabolismo , Sódio/química , Aldosterona/metabolismo , Amilorida/análogos & derivados , Amilorida/química , Animais , Aquaporina 2/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Rim/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
16.
Am J Physiol Renal Physiol ; 305(1): F12-20, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637204

RESUMO

Members of the epidermal growth factor (EGF)-family bind to ErbB (EGFR)-family receptors that play an important role in the regulation of various fundamental cell processes in many organs including the kidney. In this field, most of the research efforts are focused on the role of EGF-ErbB axis in cancer biology. However, many studies indicate that abnormal ErbB-mediated signaling pathways are critical in the development of renal and cardiovascular pathologies. The kidney is a major site of the EGF-family ligands synthesis, and it has been shown to express all four members of the ErbB receptor family. The study of kidney disease regulation by ErbB receptor ligands has expanded considerably in recent years. In vitro and in vivo studies have provided direct evidence of the role of ErbB signaling in the kidney. Recent advances in the understanding of how the proteins in the EGF-family regulate sodium transport and development of hypertension are specifically discussed here. Collectively, these results suggest that EGF-ErbB signaling pathways could be major determinants in the progress of renal lesions, including its effects on the regulation of sodium reabsorption in collecting ducts.


Assuntos
Pressão Sanguínea , Fator de Crescimento Epidérmico/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Absorção , Animais , Receptores ErbB/metabolismo , Humanos , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/fisiopatologia , Túbulos Renais Coletores/metabolismo , Ligantes , Fatores de Risco , Transdução de Sinais , Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
17.
Am J Physiol Renal Physiol ; 305(1): F134-41, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23594827

RESUMO

Extracellular nucleotides such as adenosine-5'-triphosphate (ATP) and reactive oxygen species are essential local signaling molecules in the kidney. However, measurements of changes in the interstitial concentrations of these substances in response to various stimuli remain hindered due to limitations of existing experimental techniques. The goal of this study was to develop a novel approach suitable for real-time measurements of ATP and H2O2 levels in freshly isolated rat kidney. Rats were anesthetized and the kidneys were flushed to clear blood before isolation for consequent perfusion. The perfused kidneys were placed into a bath solution and dual simultaneous amperometric recordings were made with the enzymatic microelectrode biosensors detecting ATP and H2O2. It was found that basal levels of H2O2 were increased in Dahl salt-sensitive (SS) rats fed a high-salt diet compared with SS and Sprague-Dawley rats fed a low-salt diet and that medulla contained higher levels of H2O2 compared with cortex in both strains. In contrast, ATP levels did not change in SS rats when animals were fed a high-salt diet. Importantly, angiotensin II via AT1 receptor induced rapid release of both ATP and H2O2 and this effect was enhanced in SS rats. These results demonstrate that ATP and H2O2 are critical in the development of salt-sensitive hypertension and that the current method represents a unique powerful approach for the real-time monitoring of the changes in endogenous substance levels in whole organs.


Assuntos
Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais , Técnicas Eletroquímicas , Peróxido de Hidrogênio/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Angiotensina II/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Pressão Sanguínea , Dieta Hipossódica , Modelos Animais de Doenças , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/fisiopatologia , Córtex Renal/metabolismo , Medula Renal/metabolismo , Masculino , Microeletrodos , Perfusão , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Cloreto de Sódio na Dieta , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 109(52): 21462-7, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236168

RESUMO

Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gßγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.


Assuntos
Proteínas de Transporte/metabolismo , Progressão da Doença , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Imunofluorescência , Genótipo , Inibidores de Dissociação do Nucleotídeo Guanina , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Camundongos , Rim Policístico Autossômico Dominante/fisiopatologia , Transporte Proteico , Canais de Cátion TRPP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA