Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chemosphere ; 320: 137998, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746250

RESUMO

Chronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic (AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) As species were measured in blood and urine collected at baseline and at 12 weeks. Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted spectral features were modeled using a metabolome-wide association study (MWAS) approach. Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR). In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species (FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results were consistent across blood As species and between blood and urine As. Untargeted MWAS identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed metabolites, untargeted model results were not consistent across As species, with AsV and DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched metabolic pathways that overlapped with the 17 identified metabolites, including one carbon metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism. Exposure to As may affect numerous essential pathways that underlie the well-characterized associations of As with multiple chronic diseases.


Assuntos
Arsênio , Arsenicais , Adulto , Humanos , Arsênio/metabolismo , Exposição Ambiental/efeitos adversos , Arsenicais/metabolismo , Ácido Fólico , Metabolômica , Metaboloma
2.
Environ Res ; 204(Pt C): 112270, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34717948

RESUMO

Vaping is the action of inhaling and exhaling aerosols from electronic cigarettes. The aerosols contain various amounts of toxic chemicals, including metals. The purpose of this study was to evaluate factors that can influence metal levels, including flavor and nicotine content in the e-liquid, and puff duration. Aerosols were collected from both closed-system (cartridge-based) and open-system e-cigarettes using e-liquids with different flavors (fruit, tobacco, and menthol), nicotine content (0, 6, 24, and 59 mg/mL), and different puff durations (1, 2, and 4 s). The concentrations of 14 metals in the collected aerosols were measured using inductively coupled plasma mass spectroscopy. Aerosol concentrations of As, Fe, and Mn varied significantly among fruit, tobacco, and menthol flavors in both closed-system and open-system devices. Concentrations of Al, Fe, Sn, and U were significantly higher in tobacco or menthol flavored aerosols compared to fruit flavors in closed-system devices. Aerosol W levels were significantly higher in tobacco flavored aerosols compared to fruit flavors in open-system devices. Concentrations of As, Fe, and Mn were higher in tobacco flavored aerosols compared to menthol flavors in both types of devices. The median Pb concentration decreased significantly from 15.8 to 0.88 µg/kg when nicotine content increased from 0 to 59 mg/mL, and median Ni concentration was 9.60 times higher in aerosols with nicotine of 59 mg/mL compared to 24 mg/mL (11.9 vs. 1.24 µg/kg) for closed-system devices. No significant differences were observed in aerosol metal concentrations for different puff durations. Aerosol metal concentrations varied widely between different flavors and nicotine content but not by puff duration. Flavor and nicotine content of the e-liquid could be potential factors in metal emissions. Some elements showed higher concentrations under certain conditions, highlighting the urgent need of developing strict product regulations, especially on e-liquid composition and nicotine content to inform e-cigarette users about metal exposure through vaping.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Aerossóis , Aromatizantes , Nicotina
3.
Eur J Mass Spectrom (Chichester) ; 27(2-4): 141-148, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34448631

RESUMO

The increasing use of electronic nicotine delivery systems (ENDS) is of concern due to multiple emerging adverse health effects. Most analyses of the harmful chemicals of ENDS have targeted metals or carbonyls generated by thermal decomposition of carrier liquids such as propylene glycol. However, new complex compounds not routinely identified and with unknown health consequences could be formed. ENDS aerosol samples were collected by the direct aerosol droplet deposition method. Untargeted analysis was performed using Orbitrap mass spectrometry with high mass accuracy. We identified more than 30 "features" in the aerosol characterized by pairs of the mass-to-charge ratio "m/z" of the compound and the retention time. We identified several compounds containing nicotine and propylene glycol (NIC-PG), whose abundance relative to nicotine increased along with vaping power used. On the basis of the prediction by the Environmental Protection Agency Toxicity Estimation Software Tool, these compounds exert developmental toxicity. In addition, a nitrogen-containing compound, likely tributylamine (a known lung irritant), was identified based on the molecular weight. This compound has not been previously identified in ENDS e-liquids and aerosols. ENDS produce not only small toxic compounds such as aldehydes, but also large complex toxic compounds such as NIC-PG. Predicted development toxicity for NIC-PG is concerning for fetal development in pregnant women who use ENDS, children exposed to secondhand or thirdhand ENDS aerosols, and teenage ENDS users whose brains are still developing. The strong positive association between NIC-PG levels and ENDS power output supports regulating high-powered ENDS.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Adolescente , Aerossóis , Criança , Feminino , Humanos , Espectrometria de Massas , Nicotina , Gravidez
4.
Environ Res ; 202: 111557, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245728

RESUMO

Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aerossóis , Animais , Encéfalo , Humanos , Metais/toxicidade , Camundongos , Fumantes
5.
Environ Health ; 20(1): 79, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34243768

RESUMO

BACKGROUND: Arsenic (As) exposure through drinking water is a global public health concern. Epigenetic dysregulation including changes in DNA methylation (DNAm), may be involved in arsenic toxicity. Epigenome-wide association studies (EWAS) of arsenic exposure have been restricted to single populations and comparison across EWAS has been limited by methodological differences. Leveraging data from epidemiological studies conducted in Chile and Bangladesh, we use a harmonized data processing and analysis pipeline and meta-analysis to combine results from four EWAS. METHODS: DNAm was measured among adults in Chile with and without prenatal and early-life As exposure in PBMCs and buccal cells (N = 40, 850K array) and among men in Bangladesh with high and low As exposure in PBMCs (N = 32, 850K array; N = 48, 450K array). Linear models were used to identify differentially methylated positions (DMPs) and differentially variable positions (DVPs) adjusting for age, smoking, cell type, and sex in the Chile cohort. Probes common across EWAS were meta-analyzed using METAL, and differentially methylated and variable regions (DMRs and DVRs, respectively) were identified using comb-p. KEGG pathway analysis was used to understand biological functions of DMPs and DVPs. RESULTS: In a meta-analysis restricted to PBMCs, we identified one DMP and 23 DVPs associated with arsenic exposure; including buccal cells, we identified 3 DMPs and 19 DVPs (FDR < 0.05). Using meta-analyzed results, we identified 11 DMRs and 11 DVRs in PBMC samples, and 16 DMRs and 19 DVRs in PBMC and buccal cell samples. One region annotated to LRRC27 was identified as a DMR and DVR. Arsenic-associated KEGG pathways included lysosome, autophagy, and mTOR signaling, AMPK signaling, and one carbon pool by folate. CONCLUSIONS: Using a two-step process of (1) harmonized data processing and analysis and (2) meta-analysis, we leverage four DNAm datasets from two continents of individuals exposed to high levels of As prenatally and during adulthood to identify DMPs and DVPs associated with arsenic exposure. Our approach suggests that standardizing analytical pipelines can aid in identifying biological meaningful signals.


Assuntos
Arsênio/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Leucócitos/metabolismo , Mucosa Bucal/citologia , Efeitos Tardios da Exposição Pré-Natal/genética , Poluentes Químicos da Água/efeitos adversos , Adulto , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
6.
Environ Int ; 149: 106401, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33549917

RESUMO

BACKGROUND: Water-borne arsenic (As) exposure is a global health problem. Once ingested, inorganic As (iAs) is methylated to mono-methyl (MMA) and dimethyl (DMA) arsenicals via one-carbon metabolism (OCM). People with higher relative percentage of MMA (MMA%) in urine (inefficient As methylation), have been shown to have a higher risk of cardiovascular disease and several cancers but appear to have a lower risk of diabetes and obesity in populations from the US, Mexico, and Taiwan. It is unknown if this opposite pattern with obesity is present in Bangladesh, a country with lower adiposity and higher As exposure in drinking water. OBJECTIVE: To characterize the association between body mass index (BMI) and As methylation in Bangladeshi adults and adolescents participating in the Folic Acid and Creatine Trial (FACT); Folate and Oxidative Stress (FOX) study; and Metals, Arsenic, and Nutrition in Adolescents Study (MANAS). METHODS: Arsenic species (iAs, MMA, DMA) were measured in urine and blood. Height and weight were measured to calculate BMI. The associations between concurrent BMI with urine and blood As species were analyzed using linear regression models, adjusting for nutrients involved in OCM such as choline. In FACT, we also evaluated the prospective association between weight change and As species. RESULTS: Mean BMIs were 19.2/20.4, 19.8/21.0, and 17.7/18.7 kg/m2 in males/females in FACT, FOX, and MANAS, respectively. BMI was associated with As species in female but not in male participants. In females, after adjustment for total urine As, age, and plasma folate, the adjusted mean differences (95% confidence) in urinary MMA% and DMA% for a 5 kg/m2 difference in BMI were -1.21 (-1.96, -0.45) and 2.47 (1.13, 3.81), respectively in FACT, -0.66 (-1.56, 0.25) and 1.43 (-0.23, 3.09) in FOX, and -0.59 (-1.19, 0.02) and 1.58 (-0.15, 3.30) in MANAS. The associations were attenuated after adjustment for choline. Similar associations were observed with blood As species. In FACT, a 1-kg of weight increase over 2 to 10 (mean 5.4) years in males/females was prospectively associated with mean DMA% that was 0.16%/0.19% higher. DISCUSSION: BMI was negatively associated with MMA% and positively associated with %DMA in females but not males in Bangladesh; associations were attenuated after plasma choline adjustment. These findings may be related to the role of body fat on estrogen levels that can influence one-carbon metabolism, e.g. by increasing choline synthesis. Research is needed to determine whether the associations between BMI and As species are causal and their influence on As-related health outcomes.


Assuntos
Arsênio , Arsenicais , Adolescente , Adulto , Arsênio/análise , Bangladesh/epidemiologia , Índice de Massa Corporal , Exposição Ambiental , Feminino , Humanos , Masculino , Metilação , México , Estudos Prospectivos , Taiwan
7.
Environ Res ; 195: 110750, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476663

RESUMO

BACKGROUND: Over 57 million people in Bangladesh are chronically exposed to arsenic-contaminated drinking water. Ingested inorganic arsenic (InAs) undergoes hepatic methylation generating monomethyl- (MMAs) and dimethyl- (DMAs) arsenic species in a process that facilitates urinary As (uAs) elimination. One-carbon metabolism (OCM), a biochemical pathway that is influenced by folate and vitamin B12, facilitates the methylation of As. OCM also supports nucleotide and amino acid synthesis, particularly during periods of rapid growth such as adolescence. While folate supplementation increases As methylation and lowers blood As (bAs) in adults, little data is available for adolescents. OBJECTIVES: To examine the associations between OCM-related micronutrients and As methylation in Bangladeshi adolescents chronically exposed to As-contaminated drinking water. METHODS: We conducted a cross-sectional study of 679 Bangladeshi adolescents, including 320 boys and 359 girls aged 14-16 years. Nutritional status was assessed by red blood cell (RBC) folate, plasma folate, plasma B12 and homocysteine (Hcys). Arsenic-related outcomes included blood arsenic (bAs), urinary arsenic (uAs), and urinary arsenic metabolites expressed as a percentage of total urinary As: %InAs, %MMAs, %DMAs. RESULTS: Boys had significantly lower B12, higher Hcys, higher bAs, higher uAs, higher %MMAs, and a trend toward lower RBC folate compared to girls. Therefore, regression analyses controlling for water As and BMI were sex stratified. Among girls, RBC folate was inversely associated with bAs, plasma B12 was inversely associated with uAs, and plasma Hcys was inversely associated with %MMA. Among boys, plasma folate was inversely associated with %InAs and positively associated with %DMA, RBC folate was inversely associated with %InAs and positively associated with %MMA, while Hcys was positively associated with %InAs. CONCLUSIONS: These findings suggest that associations between OCM nutritional status, bAs, and distribution of As metabolites in adolescents are similar to previously reported observations in adults and in children. The As methylation findings are statistically significant among boys but not among girls; this may be related to estrogen which more strongly influences OCM in females. The inverse association between Hcys and %MMA in girls is somewhat unexpected given that Hcys is known to be an indicator of impaired OCM and low folate/B12 in adults. Overall, these results indicate that the associations between OCM-related micronutrients and arsenic methylation in adolescents are generally similar to prior findings in adults, though these associations may differ by sex. Additionally, these findings suggest that more investigation into the role of Hcys in adolescent physiology is needed, perhaps particularly for girls. Additional studies are needed to evaluate the impact of OCM and As methylation on As-related adverse health outcomes (such as cancer and cardiovascular disease) in people exposed to As during adolescence.


Assuntos
Arsênio , Adolescente , Adulto , Bangladesh , Carbono , Criança , Estudos Transversais , Exposição Ambiental , Feminino , Humanos , Masculino , Metilação , Estado Nutricional
8.
Eur J Nutr ; 60(4): 1921-1934, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32918135

RESUMO

PURPOSE: Methylation of ingested inorganic arsenic (InAs) to monomethyl- (MMAs) and dimethyl-arsenical species (DMAs) facilitates urinary arsenic elimination. Folate and creatine supplementation influenced arsenic methylation in a randomized controlled trial. Here, we examine if baseline status of one-carbon metabolism nutrients (folate, choline, betaine, and vitamin B12) modified the effects of FA and creatine supplementation on changes in homocysteine, guanidinoacetate (GAA), total blood arsenic, and urinary arsenic metabolite proportions and indices. METHODS: Study participants (N = 622) received 400 or 800 µg FA, 3 g creatine, 400 µg FA + 3 g creatine, or placebo daily for 12 weeks. RESULTS: Relative to placebo, FA supplementation was associated with greater mean increases in %DMAs among participants with betaine concentrations below the median than those with levels above the median (FDR < 0.05). 400 µg FA/day was associated with a greater decrease in homocysteine among participants with plasma folate concentrations below, compared with those above, the median (FDR < 0.03). Creatine treatment was associated with a significant decrease in %MMAs among participants with choline concentrations below the median (P = 0.04), but not among participants above the median (P = 0.94); this effect did not significantly differ between strata (P = 0.10). CONCLUSIONS: Effects of FA and creatine supplementation on arsenic methylation capacity were greater among individuals with low betaine and choline status, respectively. The efficacy of FA and creatine interventions to facilitate arsenic methylation may be modified by choline and betaine nutritional status. CLINICAL TRIAL REGISTRATION: Clinical Trial Registry Identifier: NCT01050556, U.S. National Library of Medicine, https://clinicaltrials.gov ; registered January 15, 2010.


Assuntos
Arsênio , Adulto , Betaína , Colina , Creatina , Suplementos Nutricionais , Exposição Ambiental , Ácido Fólico , Homocisteína , Humanos , Metilação
9.
J Colloid Interface Sci ; 584: 804-815, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33268068

RESUMO

HYPOTHESIS: Identification and quantification of harmful chemicals in e-cigarette aerosol requires collecting the aerosolized e-liquid for chemical analysis. In 2016, Olmedo at al. empirically developed a simple method for aerosol collection by directing the aerosol through a sequence of alternating straight and converging tubing sections, which drain the recovered e-liquid into a collection vial. The tubing system geometry and flow conditions promote inertial impaction of aerosolized e-liquid on tube walls, where it deposits and flows into the collection vial. EXPERIMENTS: We use high-speed optical imaging to visualize aerosol transport in proxies of the collection system. We also determined collection efficiencies of various configurations of the collection system. FINDINGS: A turbulent jet emerges from converging conical sections and impinges onto the wall of downstream tubing sections, resulting in inertial impaction and deposition of the aerosol. For inertial impaction to occur the tip radius of the converging section must be small enough for a jet to be formed and the sequence of tubing sections must be curved in a polygon-like manner such that the jet emerging from a converging section impinges on the downstream tube wall. The collection efficiency is significantly smaller without such curvature.

10.
Inhal Toxicol ; 31(11-12): 399-408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31797690

RESUMO

Objectives: To (1) design and build a low-cost exposure chamber system for whole-body exposure of rodents to electronic cigarette aerosol, (2) provide detailed instructions with particular focus on automated e-cigarette activation, and (3) develop a simple mathematical model for aerosol levels in the exposure chamber.Methods: We built the system with standard laboratory equipment and an open-source electronics platform (Arduino) for e-cigarette activation. Arduino is used to control a solenoid, which pushes the activation button of so-called "Mod" e-cigarettes, and a pump to move the aerosol from the mouthpiece of the e-cigarette into the chamber. For "Pods" and "Cigalikes," the solenoid is not used as they are activated by the vacuum created by the pump. Aerosol concentrations were measured with a light-scattering laser photometer.Results: The system allows varying the air exchange rate, monitoring aerosol levels, and programing arbitrary puff topography. Aerosol concentrations observed for different chamber operating conditions (puff time and period, e-cigarette power output, air exchange rate) were consistent with the mathematical model.Conclusions: Our low-cost exposure chamber can be used in animal experimental studies of the health effects of e-cigarettes. Our model allows estimating design parameters such as chamber volume, air exchange rate, and puff period.


Assuntos
Administração por Inalação , Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Desenho de Equipamento , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Animais , Roedores
11.
Environ Res ; 174: 125-134, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071493

RESUMO

BACKGROUND: Electronic cigarettes (E-cigarettes) generate aerosol containing metal contaminants. Our goals were to quantify aerosol metal concentrations and to compare the effects of power setting and device type (closed-system vs. open-system) on metal release. METHODS: Aerosol samples were collected from two closed-system devices (a cigalike and pod) and two open-system devices (mods). Each open-system device was operated at three different power settings to examine the effect of device power on metal release. Concentrations of 14 metals in e-cigarette aerosol collected via droplet deposition were measured using inductively coupled plasma mass spectroscopy. Aerosol metal concentrations were reported as mass fractions (µg/kg) in the e-liquid. RESULTS: For open-system device 1 (OD1), median arsenic (As), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), and zinc (Zn) concentrations increased 14, 54, 17, 30, 41, 96, 14, 81, 631, and 7-fold when the device power was increased from low (20 W) to intermediate (40 W) setting. When the power was further increased from intermediate (40 W) to high (80 W) setting, concentrations of As, Cr, Cu, Mn, Ni, and Sb did not change significantly. For open-system device 2 (OD2), Cr and Mn concentrations increased significantly when device power was increased from low (40 W) to intermediate (120 W) setting, and then decreased significantly when power was further increased from intermediate (120 W) to high (200 W) setting. Among the four devices, aerosol metal concentrations were higher for the open-system than the closed-system devices, except for aluminum (Al) and uranium (U). For Cr, median (interquartile range) concentrations (µg/kg) from the open-system devices were 2.51 (1.55, 4.23) and 15.6 (7.88, 54.5) vs. 0.39 (0.05, 0.72) and 0.41 (0.34, 0.57) for the closed-system devices. For Ni, concentrations (µg/kg) from the open-system devices were 793 (508, 1169) and 2148 (851, 3397) vs. 1.32 (0.39, 3.35) and 11.9 (10.7, 22.7) from the closed-system devices. Inhalation of 0% and 100% of samples from OD1, 7.4% and 88.9% from OD2 by typical e-cigarette users would exceed chronic minimum risk levels (MRL) of Mn and Ni, respectively. No MRL exceedance was predicted for the closed-system devices. A large fraction of users of OD1 (100%) and OD2 (77.8%) would be exposed to Ni levels higher than those from reference tobacco cigarette 3R4F. CONCLUSIONS: Our findings suggest that power setting and device type affect metal release from devices to aerosol which would subsequently be inhaled by users. Metal concentrations from open-system devices first increased with device power, and then leveled off for most metals. Open-system devices generate aerosol with higher metal concentrations than closed-system devices. These findings inform tobacco regulatory science, policy makers and health professionals on potential metal health risks associated with e-cigarette use, design and manufacturing.


Assuntos
Aerossóis/análise , Sistemas Eletrônicos de Liberação de Nicotina , Monitoramento Ambiental , Metais/análise , Cromo , Metais Pesados , Níquel
12.
Cancer Epidemiol Biomarkers Prev ; 26(2): 261-269, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765800

RESUMO

BACKGROUND: Posttranslational histone modifications (PTHMs) are altered by arsenic, an environmental carcinogen. PTHMs are also influenced by nutritional methyl donors involved in one-carbon metabolism (OCM), which may protect against epigenetic dysregulation. METHODS: We measured global levels of three PTHMs, which are dysregulated in cancers (H3K36me2, H3K36me3, H3K79me2), in peripheral blood mononuclear cells (PBMC) from 324 participants enrolled in the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults. Sex-specific associations between several blood OCM indices (folate, vitamin B12, choline, betaine, homocysteine) and PTHMs were examined at baseline using regression models, adjusted for multiple tests by controlling for the false discovery rate (PFDR). We also evaluated the effects of folic acid supplementation (400 µg/d for 12 weeks), compared with placebo, on PTHMs. RESULTS: Associations between choline and H3K36me2 and between vitamin B12 and H3K79me2 differed significantly by sex (Pdiff < 0.01 and <0.05, respectively). Among men, plasma choline was positively associated with H3K36me2 (PFDR < 0.05), and among women, plasma vitamin B12 was positively associated with H3K79me2 (PFDR < 0.01). Folic acid supplementation did not alter any of the PTHMs examined (PFDR = 0.80). CONCLUSIONS: OCM indices may influence PTHMs in a sex-dependent manner, and folic acid supplementation, at this dose and duration, does not alter PTHMs in PBMCs. IMPACT: This is the first study to examine the influences of OCM indices on PTHMs in a population that may have increased susceptibility to cancer development due to widespread exposure to arsenic-contaminated drinking water and a high prevalence of hyperhomocysteinemia. Cancer Epidemiol Biomarkers Prev; 26(2); 261-9. ©2016 AACR.


Assuntos
Arsênio/efeitos adversos , Carbono/metabolismo , Creatina/administração & dosagem , Exposição Ambiental/efeitos adversos , Ácido Fólico/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Adulto , Bangladesh/epidemiologia , Suplementos Nutricionais , Feminino , Código das Histonas/efeitos dos fármacos , Humanos , Incidência , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/prevenção & controle , Processamento de Proteína Pós-Traducional/genética , Distribuição por Sexo , Fatores Sexuais , Complexo Vitamínico B/administração & dosagem , Adulto Jovem
13.
J Nutr ; 146(5): 1062-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27052531

RESUMO

BACKGROUND: Folic acid (FA) supplementation facilitates urinary excretion of arsenic, a human carcinogen. A better understanding of interactions between one-carbon metabolism intermediates may improve the ability to design nutrition interventions that further facilitate arsenic excretion. OBJECTIVE: The objective was to determine if FA and/or creatine supplementation increase choline and betaine and decrease dimethylglycine (DMG). METHODS: We conducted a secondary analysis of the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults (n = 605, aged 24-55 y, 50.3% male) who received arsenic-removal water filters. We examined treatment effects of FA and/or creatine supplementation on plasma choline, betaine, and DMG concentrations, measured by LC-tandem mass spectrometry at baseline and at week 12. Group comparisons were between 1) 400 and 800 µg FA/d (FA400 and FA800, respectively) compared with placebo, 2) creatine (3 g/d) compared with placebo, and 3) creatine plus FA400 compared with FA400. RESULTS: Choline decreased in the placebo group (-6.6%; 95% CI: -10.2%, -2.9%) but did not change in the FA groups (FA400: 2.5%; 95% CI: -0.9%, 6.1%; FA800: 1.4%; 95% CI: -2.5%, 5.5%; P < 0.05). Betaine did not change in the placebo group (-3.5%; 95% CI: -9.3%, 2.6%) but increased in the FA groups (FA400: 14.1%; 95% CI: 9.4%, 19.0%; FA800: 13.0%; 95% CI: 7.2%, 19.1%; P < 0.01). The decrease in DMG was greater in the FA groups (FA400: -26.7%; 95% CI: -30.9%, -22.2%; FA800: -27.8%; 95% CI: -31.8%, -23.4%) than in the placebo group (-12.3%; 95% CI: -18.1%, -6.2%; P < 0.01). The percentage change in choline, betaine, and DMG did not differ between creatine treatment arms and their respective reference groups. CONCLUSION: Supplementation for 12 wk with FA, but not creatine, increases plasma betaine, decreases plasma DMG, and prevents a decrease in plasma choline in arsenic-exposed Bangladeshi adults. This trial was registered at clinicaltrials.gov as NCT01050556.


Assuntos
Arsênio/urina , Betaína/sangue , Colina/sangue , Creatina/farmacologia , Suplementos Nutricionais , Ácido Fólico/farmacologia , Sarcosina/análogos & derivados , Adulto , Bangladesh , Exposição Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcosina/sangue , Espectrometria de Massas em Tandem , Complexo Vitamínico B/farmacologia , Adulto Jovem
14.
Environ Res ; 143(Pt A): 123-30, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26476787

RESUMO

BACKGROUND: Arsenic (As) methylation capacity in epidemiologic studies is typically indicated by the proportions of inorganic As (%InAs), monomethylarsonic acid (%MMA), and dimethylarsinic acid (%DMA) in urine as a fraction of total urinary As. The relationship between renal function and indicators of As methylation capacity has not been thoroughly investigated. OBJECTIVES: Our two aims were to examine (1) associations between estimated glomerular filtration rate (eGFR) and %As metabolites in blood and urine, and (2) whether renal function modifies the relationship of blood %As metabolites with respective urinary %As metabolites. METHODS: In a cross-sectional study of 375 As-exposed Bangladeshi adults, we measured blood and urinary As metabolites, and calculated eGFR from plasma cystatin C. RESULTS: In covariate-adjusted linear models, a 1 ml/min/1.73 m(2) increase in eGFR was associated with a 0.39% increase in urinary %InAs (p<0.0001) and a mean decrease in urinary %DMA of 0.07 (p=0.0005). In the 292 participants with measurable blood As metabolites, the associations of eGFR with increased blood %InAs and decreased blood %DMA did not reach statistical significance. eGFR was not associated with urinary or blood %MMA in covariate-adjusted models. For a given increase in blood %InAs, the increase in urinary %InAs was smaller in those with reduced eGFR, compared to those with normal eGFR (p=0.06); this effect modification was not observed for %MMA or %DMA. CONCLUSIONS: Urinary excretion of InAs may be impaired in individuals with reduced renal function. Alternatively, increased As methylation capacity (as indicated by decreased urinary %InAs) may be detrimental to renal function.


Assuntos
Arsênio/toxicidade , Arsenicais , Ácido Cacodílico , Água Potável/química , Taxa de Filtração Glomerular/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Adulto , Idoso , Arsênio/sangue , Arsênio/urina , Arsenicais/sangue , Arsenicais/urina , Bangladesh , Ácido Cacodílico/sangue , Ácido Cacodílico/urina , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Masculino , Metilação , Pessoa de Meia-Idade , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/urina
15.
Cancer Epidemiol Biomarkers Prev ; 24(11): 1748-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364164

RESUMO

BACKGROUND: Depletion of global 5-hydroxymethylcytosine (5-hmC) is observed in human cancers and is strongly implicated in skin cancer development. Although arsenic (As)-a class I human carcinogen linked to skin lesion and cancer risk-is known to be associated with changes in global %5-methylcytosine (%5-mC), its influence on 5-hmC has not been widely studied. METHODS: We evaluated associations of As in drinking water, urine, and blood with global %5-mC and %5-hmC in two studies of Bangladeshi adults: (i) leukocyte DNA in the Nutritional Influences on Arsenic Toxicity study (n = 196; 49% male, 19-66 years); and (ii) peripheral blood mononuclear cell DNA in the Folate and Oxidative Stress study (n = 375; 49% male, 30-63 years). RESULTS: Overall, As was not associated with global %5-mC or %5-hmC. Sex-specific analyses showed that associations of As exposure with global %5-hmC were positive in males and negative in females (P for interaction < 0.01). Analyses examining interactions by elevated plasma total homocysteine (tHcys), an indicator of B-vitamin deficiency, found that tHcys also modified the association between As and global %5-hmC (P for interaction < 0.10). CONCLUSION: In two samples, we observed associations between As exposure and global %5-hmC in blood DNA that were modified by sex and tHcys. IMPACT: Our findings suggest that As induces sex-specific changes in 5-hmC, an epigenetic mark that has been associated with cancer. Future research should explore whether altered %5-hmC is a mechanism underlying the sex-specific influences of As on skin lesion and cancer outcomes.


Assuntos
Arsênio/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Leucócitos/efeitos dos fármacos , 5-Metilcitosina/análogos & derivados , Adulto , Idoso , Arsênio/sangue , Arsênio/urina , Bangladesh/epidemiologia , Citosina/análogos & derivados , Citosina/metabolismo , Água Potável/análise , Exposição Ambiental/estatística & dados numéricos , Feminino , Homocisteína/sangue , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
16.
J Nutr ; 145(10): 2245-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26311810

RESUMO

BACKGROUND: Creatine synthesis from guanidinoacetate consumes ~50% of s-adenosylmethionine (SAM)-derived methyl groups, accounting for an equivalent proportion of s-adenosylhomocysteine (SAH) and total homocysteine (tHcys) synthesis. Dietary creatine inhibits the synthesis of guanidinoacetate, thereby lowering plasma tHcys in rats. OBJECTIVE: We tested the hypotheses that creatine supplementation lowers plasma guanidinoacetate, increases blood SAM, lowers blood SAH, and lowers plasma tHcys. METHODS: Bangladeshi adults were randomly assigned to receive 1 of 4 treatments for 12 wk: placebo (n = 101), 3 g/d creatine (Cr; n = 101), 400 µg/d folic acid (FA; n = 153), or 3 g/d creatine plus 400 µg/d folic acid (Cr+FA; n = 103). The outcomes of plasma guanidinoacetate and tHcys, as well as whole blood SAM and SAH, were analyzed at baseline and week 12 by HPLC. Treatment effects of creatine supplementation were examined with the use of the group comparisons of Cr vs. placebo and Cr+FA vs. FA. RESULTS: Plasma guanidinoacetate declined by 10.6% (95% CI: 4.9, 15.9) in the Cr group while increasing nonsignificantly in the placebo group (3.7%; 95% CI: -0.8, 8.5) (Pgroup difference = 0.0002). Similarly, plasma guanidinoacetate declined by 9.0% (95% CI: 3.4, 14.2) in the Cr+FA group while increasing in the FA group (7.0%; 95% CI: 2.0, 12.2) (Pgroup difference < 0.0001). Plasma tHcys declined by 23.4% (95% CI: 19.5, 27.1) and 21.0% (95% CI: 16.4, 25.2) in the FA and Cr+FA groups, respectively (Pgroup difference = 0.41), with no significant changes in the placebo or Cr groups (Pgroup difference = 0.35). A decrease in guanidinoacetate over time was associated with a decrease in tHcys over time in the Cr+FA group (ß = 0.30; 95% CI: 0.17, 0.43; P < 0.0001). CONCLUSIONS: Our findings indicate that whereas creatine supplementation downregulates endogenous creatine synthesis, this may not on average lower plasma tHcys in humans. However, tHcys did decrease in those participants who experienced a decline in plasma guanidinoacetate while receiving creatine plus folic acid supplementation. This trial was registered at clinicaltrials.gov as NCT01050556.


Assuntos
Creatina/uso terapêutico , Suplementos Nutricionais , Regulação para Baixo , Glicina/análogos & derivados , Homocisteína/sangue , Hiper-Homocisteinemia/prevenção & controle , Adulto , Bangladesh , Biomarcadores/sangue , Estudos de Coortes , Creatina/administração & dosagem , Creatina/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Feminino , Ácido Fólico/efeitos adversos , Ácido Fólico/uso terapêutico , Glicina/sangue , Humanos , Hiper-Homocisteinemia/sangue , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Pacientes Desistentes do Tratamento , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue
17.
Free Radic Biol Med ; 85: 174-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25916185

RESUMO

Exposure to arsenic (As) in drinking water is a widespread public health problem leading to increased risk for multiple outcomes such as cancer, cardiovascular disease, and possibly renal disease; potential mechanisms include inflammation and oxidative stress. We tested the hypothesis that As exposure is associated with increased inflammation and decreased estimated glomerular filtration rate (eGFR) and examined whether the effects of As were modified by plasma glutathione (GSH), glutathione disulfide (GSSG), or the reduction potential of the GSSG/2GSH pair (EhGSH). In a cross-sectional study of N = 374 Bangladeshi adults having a wide range of As exposure, we measured markers of inflammation (plasma C-reactive protein (CRP), α-1 acid glycoprotein (AGP)), renal function (eGFR), GSH, and GSSG. In covariate-adjusted models, a 10% increase in water As, urinary As adjusted for specific gravity (uAs), or blood As (bAs) was associated with a 0.74% (p = 0.01), 0.90% (p = 0.16), and 1.39% (p = 0.07) increase in CRP, respectively; there was no association with AGP. A 10% increase in uAs or bAs was associated with an average reduction in eGFR of 0.16 (p = 0.12) and 0.21 ml/min/1.73 m(2) (p = 0.08), respectively. In stratified analyses, the effect of As exposure on CRP was observed only in participants having EhGSH > median (uAs p(Wald) = 0.03; bAs p(Wald) = 0.05). This was primarily driven by stronger effects of As exposure on CRP in participants with lower plasma GSH. The effects of As exposure on eGFR were not modified significantly by EhGSH, GSH, or GSSG. These data suggest that participants having lower plasma GSH and a more oxidized plasma EhGSH are at increased risk for As-induced inflammation. Future studies should evaluate whether antioxidant treatment lowers plasma EhGSH and reduces risk for As-induced diseases.


Assuntos
Arsênio/toxicidade , Glutationa/sangue , Inflamação/induzido quimicamente , Testes de Função Renal , Adulto , Bangladesh , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução
18.
PLoS One ; 9(12): e113760, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25438247

RESUMO

Kidney disease is emerging as an arsenic (As)-linked disease outcome, however further evidence of this association is warranted. Our first objective for this paper was to examine the potential renal toxicity of As exposure in Bangladesh. Our second objective relates to examining whether the previously reported positive association between urinary creatinine (uCrn) and As methylation may be explained by renal function. We had hypothesized that these associations relate to supply and demand for s-adenosylmethionine, the methyl donor for both creatine synthesis and As methylation. Alternatively, renal function could influence both As and creatinine excretion, or the As metabolites may influence renal function, which in turn influences uCrn. We conducted a cross-sectional study (N = 478) of adults, composed of a sample recruited in 2001 and a sample recruited in 2003. We assessed renal function using plasma cystatin C, and calculated the estimated glomerular filtration rate (eGFR). Consistent with renal toxicity of As, log-uAs had a marginal inverse association with eGFR in the 2003 sample (b = -5.6, p = 0.07), however this association was not significant in the 2001 sample (b = -1.9, p = 0.24). Adjustment for eGFR did not alter the associations between uCrn and the %uAs metabolites, indicating that GFR does not explain these associations. Increased eGFR was associated with increased odds of having %uInAs >12.2% (2001: OR = 1.01, 95%CI (1.00,1.03); 2003: OR = 1.04, 95%CI (1.01,1.07)). In the 2003 sample only, there was a negative association between eGFR and %uDMA (b = -0.08, p = 0.02). These results may indicate differential effects of renal function on excretion of InAs and DMA. Alternatively, a certain methylation pattern, involving decreased %InAs and increased %DMA, may reduce renal function. Given that these studies were cross-sectional, we cannot distinguish between these two possibilities. Discrepancies between the samples may be due to the higher As exposure, poorer nutrition, and lower As methylation capacity in the 2003 sample.


Assuntos
Arsênio/toxicidade , Creatinina/urina , Nefropatias/induzido quimicamente , S-Adenosilmetionina/metabolismo , Adolescente , Adulto , Arsênio/urina , Bangladesh , Estudos Transversais , Exposição Ambiental/efeitos adversos , Feminino , Taxa de Filtração Glomerular , Humanos , Nefropatias/metabolismo , Nefropatias/urina , Masculino , Pessoa de Meia-Idade , Poluentes Químicos da Água/química , Adulto Jovem
19.
Free Radic Biol Med ; 73: 67-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24726863

RESUMO

Inorganic arsenic(As) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine, a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n=376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations.


Assuntos
Arsênio/metabolismo , Arsenicais/urina , Ácido Cacodílico/urina , Ácido Fólico/sangue , Glutationa/sangue , Metiltransferases/metabolismo , Adulto , Idoso , Arsênio/química , Bangladesh , Estudos Transversais , Água Potável , Exposição Ambiental , Feminino , Deficiência de Ácido Fólico/sangue , Glutationa/química , Dissulfeto de Glutationa/sangue , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Oxirredução , S-Adenosilmetionina/química
20.
J Nutr ; 144(5): 690-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598884

RESUMO

Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species (MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent one-carbon metabolism. With the use of samples from 353 participants in the Folate and Oxidative Stress Study, our objective was to test the hypotheses that blood SAM and SAH concentrations are associated with arsenic methylation and that these associations differ by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% urinary InAs) (ß: -0.11; 95% CI: -0.19, -0.02; P = 0.01), and folate and cobalamin nutritional status significantly modified associations between SAM and percentage of blood MMA (%bMMA) and percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with %bMMA (ß: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (ß: -6.19; 95% CI: -12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for DMA synthesis, contributing additional evidence that nutritional status may explain some of the interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic toxicity.


Assuntos
Arsênio/sangue , Arsenicais/sangue , Exposição Ambiental , Ácido Fólico/sangue , S-Adenosilmetionina/sangue , Vitamina B 12/sangue , Adulto , Idoso , Arsênio/toxicidade , Arsênio/urina , Intoxicação por Arsênico/sangue , Intoxicação por Arsênico/urina , Arsenicais/urina , Bangladesh , Estudos Transversais , Água Potável , Feminino , Homocisteína/sangue , Humanos , Masculino , Metilação , Pessoa de Meia-Idade , Estresse Oxidativo , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA