Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 14(10): 1432-1444, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320703

RESUMO

Exposure to nanomaterials is considered as one of the risk factors for neurodegenerative pathology. In vitro inorganic nanoparticles (NPs) absorb intrinsically disordered proteins, many of which are the constituents of stress-granules (SGs). SGs normally form in response to cellular stress and, here, we addressed whether selected inorganic NPs could trigger SGs formation in cells. To this end, we have tested a series of inorganic NPs for their ability to induce SGs formation in human glioblastoma and fibroblast cell lines. Among tested NPs, only Mn3O4 NPs triggered SGs formation in cell-type-specific and metabolic-dependent manner. In human glioblastoma U87 MG cell line, Mn3O4 NPs entered cells within minutes and resided inside intracellular vesicles for at least 48 h. Mn3O4 NPs induced a strong reduction in oxidative phosphorylation rate, but not glycolysis. We showed that Mn3O4 NPs slowly dissolve producing a local net of Mn2+ cations, which are known to inhibit oxidative phosphorylation. Indeed, direct incubation of cells with equimolar amounts of Mn2+ cations triggered SGs formation and reduced cellular respiration rate. However, while SGs formed in response to Mn3O4 NPs persisted for hours, SGs formation by Mn2+ peaked and dropped within minutes. Finally, Mn3O4 NPs mediated SGs formation via the phosphorylation of eIF2α. Thus, we conclude that exposure of U87 MG cells to Mn3O4 NPs caused a 'Trojan-horse' prolonged SGs response.


Assuntos
Fibroblastos/efeitos dos fármacos , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxidos/toxicidade , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Fibroblastos/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Compostos de Manganês , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Propriedades de Superfície
2.
Sci Rep ; 6: 22047, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911348

RESUMO

Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na(+)/K(+)-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2(+/G301R)) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2(G301R/G301R) E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2(+/G301R) male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2(+/G301R) behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.


Assuntos
Ácido Glutâmico/metabolismo , Enxaqueca com Aura/genética , Enxaqueca com Aura/metabolismo , Mutação , Fenótipo , Estimulação Acústica , Animais , Comportamento Animal , Transporte Biológico , Circulação Cerebrovascular , Biologia Computacional/métodos , Depressão Alastrante da Atividade Elétrica Cortical/genética , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Enxaqueca com Aura/diagnóstico , Enxaqueca com Aura/tratamento farmacológico , Atividade Motora , Tempo de Reação , ATPase Trocadora de Sódio-Potássio/genética , Estresse Fisiológico
3.
PLoS One ; 9(6): e98469, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901986

RESUMO

Glutamate released during neuronal activity is cleared from the synaptic space via the astrocytic glutamate/Na(+) co-transporters. This transport is driven by the transmembrane Na(+) gradient mediated by Na,K-ATPase. Astrocytes express two isoforms of the catalytic Na,K-ATPase α subunits; the ubiquitously expressed α1 subunit and the α2 subunit that has a more specific expression profile. In the brain α2 is predominantly expressed in astrocytes. The isoforms differ with regard to Na+ affinity, which is lower for α2. The relative roles of the α1 and α2 isoforms in astrocytes are not well understood. Here we present evidence that the presence of the α2 isoform may contribute to a more efficient restoration of glutamate triggered increases in intracellular sodium concentration [Na(+)]i. Studies were performed on primary astrocytes derived from E17 rat striatum expressing Na,K-ATPase α1 and α2 and the glutamate/Na(+) co-transporter GLAST. Selective inhibition of α2 resulted in a modest increase of [Na(+)]i accompanied by a disproportionately large decrease in uptake of aspartate, an indicator of glutamate uptake. To compare the capacity of α1 and α2 to handle increases in [Na(+)]i triggered by glutamate, primary astrocytes overexpressing either α1 or α2 were used. Exposure to glutamate 200 µM caused a significantly larger increase in [Na(+)]i in α1 than in α2 overexpressing cells, and as a consequence restoration of [Na(+)]i, after glutamate exposure was discontinued, took longer time in α1 than in α2 overexpressing cells. Both α1 and α2 interacted with astrocyte glutamate/Na(+) co-transporters via the 1st intracellular loop.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ácido Aspártico/metabolismo , Transporte Biológico , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Expressão Gênica , Espaço Intracelular/metabolismo , Isoenzimas , Ligação Proteica , Ratos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA