Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 16(36): e2000527, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32351023

RESUMO

The diversity and increasing prevalence of products derived from engineered nanomaterials (ENM), warrants implementation of non-animal approaches to health hazard assessment for ethical and practical reasons. Although non-animal approaches are becoming increasingly popular, there are almost no studies of side-by-side comparisons with traditional in vivo assays. Here, transcriptomics is used to investigate mechanistic similarities between healthy/asthmatic models of 3D air-liquid interface (ALI) cultures of donor-derived human bronchial epithelia cells, and mouse lung tissue, following exposure to copper oxide ENM. Only 19% of mouse lung genes with human orthologues are not expressed in the human 3D ALI model. Despite differences in taxonomy and cellular complexity between the systems, a core subset of matching genes cluster mouse and human samples strictly based on ENM dose (exposure severity). Overlapping gene orthologue pairs are highly enriched for innate immune functions, suggesting an important and maybe underestimated role of epithelial cells. In conclusion, 3D ALI models based on epithelial cells, are primed to bridge the gap between traditional 2D in vitro assays and animal models of airway exposure, and transcriptomics appears to be a unifying dose metric that links in vivo and in vitro test systems.


Assuntos
Alternativas aos Testes com Animais , Cobre , Células Epiteliais , Pulmão , Nanopartículas Metálicas , Toxicologia , Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Animais , Cobre/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Camundongos , Modelos Animais , Toxicologia/métodos
2.
ACS Nano ; 11(1): 291-303, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28045493

RESUMO

Carbon nanotubes (CNTs) have the potential to impact technological and industrial progress, but their production and use may, in some cases, cause serious health problems. Certain rod-shaped multiwalled CNTs (rCNTs) can, in fact, induce severe asbestos-like pathogenicity in mice, including granuloma formation, fibrosis, and even cancer. Evaluating the comparability between alternative hazard assessment methods is needed to ensure fast and reliable evaluation of the potentially adverse effects of these materials. To compare two alternative airway exposure methods, C57BL/6 mice were exposed to rCNTs by a state-of-the-art but laborious and expensive inhalation method (6.2-8.2 mg/m3, 4 h/day for 4 days) or by oropharyngeal aspiration (10 or 40 µg/day for 4 days), which is cheaper and easier to perform. In addition to histological and cytological studies, transcriptome analysis was also carried out on the lung tissue samples. Both inhalation and low-dose (10 µg/day) aspiration exposure to rCNTs promoted strong accumulation of eosinophils in the lungs and recruited also a few neutrophils and lymphocytes. In contrast, the aspiration of a high-dose (40 µg/day) rCNT caused only a mild pulmonary eosinophilia but enhanced accumulation of neutrophils in the airways. Inhalation and low-dose aspiration exposure promoted comparable giant cell formation, mucus production, and IL-13 expression in the lungs. Both exposure methods also exacerbated similar expression alterations with 154 (56.4%) differentially expressed, overlapping genes in microarray analyses. Of all differentially expressed genes, up to 80% of the activated biological functions were shared according to pathway enrichment analyses. Inhalation and low-dose aspiration elicited very similar pulmonary inflammation providing evidence that oropharyngeal aspiration is a valid approach and a convenient alternative to the inhalation exposure for the hazard assessment of nanomaterials.


Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/química , Pneumonia/induzido quimicamente , Administração por Inalação , Animais , Feminino , Exposição por Inalação , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo
3.
Toxicol Sci ; 147(1): 140-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048651

RESUMO

Carbon nanotubes (CNT) have been eagerly studied because of their multiple applications in product development and potential risks on health. We investigated the difference of two different CNT and asbestos in inducing proinflammatory reactions in C57BL/6 mice after single pharyngeal aspiration exposure. We used long tangled and long rod-like CNT, as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse. The mice were sacrificed 4 and 16 h or 7, 14, and 28 days after the exposure. To find out the importance of a major inflammatory marker IL-1ß in CNT-induced pulmonary inflammation, we used etanercept and anakinra as antagonists as well as Interleukin 1 (IL-1) receptor (IL-1R-/-) mice. The results showed that rod-like CNT, and asbestos in lesser extent, induced strong pulmonary neutrophilia accompanied by the proinflammatory cytokines and chemokines 16 h after the exposure. Seven days after the exposure, neutrophilia had essentially disappeared but strong pulmonary eosinophilia peaked in rod-like CNT and asbestos-exposed groups. After 28 days, pulmonary granulomas, goblet cell hyperplasia, and Charcot-Leyden-like crystals containing acidophilic macrophages were observed especially in rod-like CNT-exposed mice. IL-1R-/- mice and antagonists-treated mice exhibited a significant decrease in neutrophilia and messenger ribonucleic acid (mRNA) levels of proinflammatory cytokines at 16 h. However, rod-like CNT-induced Th2-type inflammation evidenced by the expression of IL-13 and mucus production was unaffected in IL-1R-/- mice at 28 days. This study provides knowledge about the pulmonary effects induced by a single exposure to the CNT and contributes to hazard assessment of carbon nanomaterials on airway exposure.


Assuntos
Amianto/toxicidade , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/patologia , Receptores de Interleucina-1/metabolismo , Animais , Asbesto Crocidolita/toxicidade , Linfócitos T CD4-Positivos/efeitos dos fármacos , Quimiocinas/biossíntese , Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/efeitos dos fármacos , Muco/metabolismo , Neutrófilos/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Interleucina-1/efeitos dos fármacos , Receptores de Interleucina-1/genética
4.
Environ Mol Mutagen ; 56(2): 171-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25257801

RESUMO

Nanocellulosics are among the most promising innovations for a wide-variety of applications in materials science. Although nanocellulose is presently produced only on a small scale, its possible toxic effects should be investigated at this early stage. The aim of the present study was to examine the potential genotoxicity and immunotoxicity of two celluloses in vitro - cellulose nanocrystals (CNC; mean fibril length 135 nm, mean width 7.3 nm) and a commercially available microcrystalline (non-nanoscale) cellulose (MCC; particle size ∼50 µm). Both celluloses showed 55% cytotoxicity at approximately 100 µg/ml after 4-h, 24-h, and 48-h treatment of human bronchial epithelial BEAS 2B cells, as determined by luminometric detection of ATP and cell count (dead cells identified by propidium iodide). Neither of the materials was able to induce micronuclei (MN) in binucleate or mononucleate BEAS 2B cells after a 48-h treatment (2.5-100 µg/ml). In human monocyte-derived macrophages, MCC induced a release (measured by enzyme-linked immunosorbent assay; ELISA) of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and (after lipopolysaccharide-priming) interleukin 1ß (IL-1ß) after a 6-h exposure to a dose of 300 µg/ml, but CNC (30-300 µg/ml) did not. In conclusion, our results show that nanosized CNC is neither genotoxic nor immunotoxic under the conditions tested, whereas non-nanosized MCC is able to induce an inflammatory response. More studies are needed, especially in vivo, to further assess if CNC and other nanocelluloses induce secondary genotoxic effects mediated by inflammation.


Assuntos
Celulose/efeitos adversos , Imunotoxinas/efeitos adversos , Mutagênicos/efeitos adversos , Nanopartículas/efeitos adversos , Brônquios/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Celulose/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Testes para Micronúcleos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura
5.
Part Fibre Toxicol ; 11: 48, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25318534

RESUMO

BACKGROUND: Carbon nanotubes (CNT) represent a great promise for technological and industrial development but serious concerns on their health effects have also emerged. Rod-shaped CNT are, in fact, able to induce asbestos-like pathogenicity in mice including granuloma formation in abdominal cavity and sub-pleural fibrosis. Exposure to CNT, especially in the occupational context, happens mainly by inhalation. However, little is known about the possible effects of CNT on pulmonary allergic diseases, such as asthma. METHODS: We exposed mice by inhalation to two types of multi-walled CNT, rigid rod-like and flexible tangled CNT, for four hours a day once or on four consecutive days. Early events were monitored immediately and 24 hours after the single inhalation exposure and the four day exposure mimicked an occupational work week. Mast cell deficient mice were used to evaluate the role of mast cells in the occurring inflammation. RESULTS: Here we show that even a short-term inhalation of the rod-like CNT induces novel innate immunity-mediated allergic-like airway inflammation in healthy mice. Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines. Exploration of the early events by transcriptomics analysis reveals that a single 4-h exposure to rod-shaped CNT, but not to tangled CNT, causes a radical up-regulation of genes involved in innate immunity and cytokine/chemokine pathways. Mast cells were found to partially regulate the inflammation caused by rod-like CNT, but also alveaolar macrophages play an important role in the early stages. CONCLUSIONS: These observations emphasize the diverse abilities of CNT to impact the immune system, and they should be taken into account for hazard assessment.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Hipersensibilidade Respiratória/etiologia , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Aerossóis , Poluentes Atmosféricos/química , Animais , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Eosinofilia/etiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/fisiopatologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/fisiopatologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Fatores de Tempo
6.
Part Fibre Toxicol ; 11: 38, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25123235

RESUMO

BACKGROUND: Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. METHODS: Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). RESULTS: Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. CONCLUSIONS: These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin.


Assuntos
Alérgenos , Antialérgicos/toxicidade , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/prevenção & controle , Imunoglobulina E/sangue , Nanopartículas Metálicas/toxicidade , Pele/efeitos dos fármacos , Óxido de Zinco/toxicidade , Administração Cutânea , Animais , Antialérgicos/administração & dosagem , Biomarcadores/sangue , Citocinas/genética , Citocinas/metabolismo , Dermatite Atópica/sangue , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Enterotoxinas , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanopartículas Metálicas/administração & dosagem , Camundongos Endogâmicos BALB C , Ovalbumina , RNA Mensageiro/metabolismo , Medição de Risco , Pele/imunologia , Pele/lesões , Protetores Solares/administração & dosagem , Protetores Solares/toxicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Óxido de Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA